Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:180
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Bonnie采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
1秒前
lin应助wos采纳,获得10
1秒前
1秒前
感性的俊驰完成签到 ,获得积分10
1秒前
ll应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
出租耳朵应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
hky完成签到 ,获得积分10
2秒前
315947完成签到,获得积分10
2秒前
小孙发布了新的文献求助10
2秒前
跳跃凡桃发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
聪明天玉发布了新的文献求助10
3秒前
way完成签到,获得积分10
4秒前
4秒前
Naveed发布了新的文献求助10
4秒前
5秒前
晚思闲云完成签到 ,获得积分10
6秒前
315947发布了新的文献求助10
6秒前
大将军完成签到,获得积分10
7秒前
7秒前
sun完成签到,获得积分10
7秒前
7秒前
7秒前
8888拉完成签到,获得积分10
7秒前
8秒前
大模型应助Felix采纳,获得30
8秒前
smottom应助喵喵采纳,获得20
9秒前
9秒前
10秒前
陌上花开发布了新的文献求助10
10秒前
踏月偷心发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809