Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:170
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dai WJ发布了新的文献求助10
刚刚
黄大师完成签到 ,获得积分10
刚刚
愤怒的河虾完成签到,获得积分10
刚刚
所所应助XIXI采纳,获得10
刚刚
麻麻发布了新的文献求助10
1秒前
经法发布了新的文献求助10
1秒前
MailkMonk完成签到,获得积分20
1秒前
cici完成签到,获得积分10
2秒前
快乐小文发布了新的文献求助30
2秒前
惜寒完成签到 ,获得积分10
2秒前
2秒前
Grayball应助无奈梦岚采纳,获得10
2秒前
此生不换完成签到 ,获得积分10
3秒前
寻舟者完成签到,获得积分10
4秒前
4秒前
4秒前
橘子屿布丁完成签到,获得积分10
5秒前
5秒前
Zhy完成签到,获得积分10
6秒前
bzy发布了新的文献求助10
6秒前
6秒前
风趣秋白完成签到,获得积分10
6秒前
情怀应助tanmeng77采纳,获得10
6秒前
若空完成签到 ,获得积分10
7秒前
典雅又夏发布了新的文献求助10
7秒前
XIXI完成签到,获得积分10
7秒前
8秒前
夏夏发布了新的文献求助10
8秒前
666完成签到,获得积分10
8秒前
8秒前
tzy完成签到,获得积分10
8秒前
Jackcaosky发布了新的文献求助200
8秒前
tt完成签到 ,获得积分10
9秒前
tennisgirl发布了新的文献求助30
9秒前
DDTT发布了新的文献求助10
10秒前
Li发布了新的文献求助10
11秒前
xiaozhang完成签到,获得积分10
11秒前
科研小民工应助Jinji采纳,获得200
11秒前
12秒前
Elaine完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678