Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:215
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的巨人完成签到 ,获得积分10
刚刚
灿烂完成签到,获得积分10
刚刚
柳暗花明1302完成签到,获得积分10
刚刚
未闻明日之花完成签到,获得积分10
1秒前
75986686完成签到,获得积分10
1秒前
hearz发布了新的文献求助10
1秒前
负责金毛完成签到,获得积分10
1秒前
fan051500完成签到,获得积分10
2秒前
清脆乐曲完成签到,获得积分10
2秒前
arzw完成签到,获得积分10
2秒前
勤奋的天亦完成签到,获得积分10
3秒前
3秒前
哒哒哒完成签到,获得积分10
3秒前
天水张家辉完成签到,获得积分10
3秒前
3秒前
乐一李完成签到,获得积分10
4秒前
ding应助无敌是多么寂寞采纳,获得10
4秒前
zyyyyyyyy完成签到 ,获得积分10
4秒前
会飞的蜗牛完成签到,获得积分10
4秒前
沉默的凝荷完成签到,获得积分10
4秒前
布小丁完成签到,获得积分20
5秒前
lv完成签到,获得积分10
5秒前
pikachu完成签到,获得积分10
5秒前
KYTHUI完成签到,获得积分10
5秒前
贺兰鸵鸟完成签到,获得积分10
6秒前
Rain1god完成签到,获得积分10
6秒前
kma完成签到,获得积分10
6秒前
南方周末完成签到,获得积分10
6秒前
凌代萱完成签到 ,获得积分10
7秒前
阿哲完成签到,获得积分10
7秒前
myuniv发布了新的文献求助10
7秒前
莫x莫完成签到 ,获得积分10
7秒前
Tingshan完成签到,获得积分10
7秒前
静待花开完成签到 ,获得积分10
7秒前
8秒前
叶子完成签到,获得积分10
8秒前
SciGPT应助会飞的蜗牛采纳,获得10
9秒前
布小丁发布了新的文献求助10
9秒前
Treasure完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946045
求助须知:如何正确求助?哪些是违规求助? 4210330
关于积分的说明 13087390
捐赠科研通 3990895
什么是DOI,文献DOI怎么找? 2184843
邀请新用户注册赠送积分活动 1200218
关于科研通互助平台的介绍 1113922