Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:162
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Importance

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.

Objective

To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.

Design, Setting, and Participants

This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.

Main Outcomes and Measures

Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.

Results

A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.

Conclusions and Relevance

In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞飞发布了新的文献求助10
5秒前
海鹏完成签到 ,获得积分10
6秒前
好好好完成签到 ,获得积分10
8秒前
飞飞飞完成签到,获得积分10
15秒前
段采萱完成签到 ,获得积分10
17秒前
18秒前
18秒前
wanghao完成签到 ,获得积分10
20秒前
32秒前
chichenglin完成签到 ,获得积分10
33秒前
34秒前
又又完成签到,获得积分10
38秒前
烤鸭完成签到 ,获得积分10
38秒前
qq完成签到 ,获得积分10
45秒前
45秒前
糖宝完成签到 ,获得积分10
46秒前
Xiao10105830完成签到,获得积分10
51秒前
大大蕾完成签到 ,获得积分10
55秒前
59秒前
高高代珊完成签到 ,获得积分10
1分钟前
王kk完成签到 ,获得积分10
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
1分钟前
drjj完成签到 ,获得积分10
1分钟前
CipherSage应助斯文的翠阳采纳,获得10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
RH2024发布了新的文献求助30
1分钟前
Singularity完成签到,获得积分0
1分钟前
Lesterem完成签到 ,获得积分10
2分钟前
缘分完成签到,获得积分10
2分钟前
zyw完成签到 ,获得积分10
2分钟前
WYnini完成签到 ,获得积分10
2分钟前
情怀应助摆渡人采纳,获得10
2分钟前
智智完成签到 ,获得积分10
2分钟前
duonicola完成签到,获得积分10
2分钟前
CLTTT完成签到,获得积分10
2分钟前
Akim应助babulao采纳,获得10
2分钟前
二牛完成签到,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252900
捐赠科研通 2556928
什么是DOI,文献DOI怎么找? 1385502
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303