Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:198
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taoze完成签到,获得积分10
刚刚
张小度ever完成签到 ,获得积分10
1秒前
hutian完成签到,获得积分10
1秒前
大姿兰卡眼睛完成签到 ,获得积分10
2秒前
Sky完成签到,获得积分10
3秒前
静静子完成签到,获得积分10
3秒前
随安完成签到,获得积分20
3秒前
大意的雨双完成签到 ,获得积分10
3秒前
Dr.Shan完成签到,获得积分10
3秒前
JIASHOUSHOU完成签到,获得积分10
4秒前
一颗煤炭完成签到 ,获得积分10
4秒前
Cipher完成签到 ,获得积分10
5秒前
脑洞疼应助LIUYONG采纳,获得10
5秒前
可乐完成签到,获得积分10
5秒前
6秒前
koukousang完成签到,获得积分10
7秒前
乐乐应助张无缺采纳,获得10
8秒前
三三完成签到,获得积分10
8秒前
平常荷花完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
阿胡发布了新的文献求助30
11秒前
水晶李完成签到 ,获得积分10
12秒前
脑洞疼应助静静子采纳,获得100
15秒前
新年好完成签到,获得积分10
16秒前
爆米花应助Michelle采纳,获得10
19秒前
19秒前
LYSM应助晴栀采纳,获得10
20秒前
Bean完成签到,获得积分10
20秒前
20秒前
20秒前
幸福妙柏完成签到 ,获得积分10
21秒前
汕头凯奇完成签到,获得积分10
22秒前
aoba完成签到 ,获得积分10
23秒前
潇洒的平松完成签到,获得积分10
24秒前
qwer完成签到,获得积分10
24秒前
fduqyy发布了新的文献求助10
24秒前
csu_zs完成签到,获得积分10
24秒前
24秒前
LILYpig完成签到 ,获得积分10
25秒前
文静醉易完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029