已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep multi-level fusion network for multi-source image pixel-wise classification

计算机科学 人工智能 多光谱图像 RGB颜色模型 像素 模式识别(心理学) 高光谱成像 点云 分割 图像分割 图像分辨率 图像(数学) 光学(聚焦) 图像融合 计算机视觉 特征(语言学) 哲学 语言学 物理 光学
作者
Xu Liu,Licheng Jiao,Lingling Li,Xu Tang,Yuwei Guo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:221: 106921-106921 被引量:34
标识
DOI:10.1016/j.knosys.2021.106921
摘要

For multi-source image pixel-wise classification, each image information is different and complementary in the same area or scene. However, how to integrate them for decision-making is a difficult problem. In this paper, we focus on the characteristics of multi-source image and propose a novel pixel-wise classification method, named deep multi-level fusion network. The proposed method is to classify multi-sensor data including very high-resolution (VHR) RGB imagery, hyperspectral imagery (HSI) and multispectral light detection and ranging (MS-LiDAR) point cloud data. First, a deep spectral–spatial attention network is proposed to process HSI and MS-LiDAR images and get a learned classification map, which is based on feature level fusion. Next, a down-superpixel segmentation algorithm is proposed to get a segmentation result for VHR RGB imagery. Finally, the feature level fusion results are refinement by the down-superpixel segmentation results on the decision level, and get the final result. Extensive experiments and analyses on the data set grss_dfc_2018 demonstrate that the proposed multi-level fusion network can achieve a better result in the multi-source image pixel-wise classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助ZDTT采纳,获得10
2秒前
小二郎应助mmyhn采纳,获得10
2秒前
顺颂时祺发布了新的文献求助10
5秒前
欢呼的未来完成签到 ,获得积分10
5秒前
绿柏完成签到,获得积分10
7秒前
米饭儿完成签到 ,获得积分10
7秒前
10秒前
噜噜晓完成签到 ,获得积分10
11秒前
13秒前
meiqi完成签到 ,获得积分10
14秒前
shengz完成签到,获得积分10
16秒前
李小丸发布了新的文献求助10
16秒前
HuLL完成签到 ,获得积分10
16秒前
逍遥完成签到,获得积分10
18秒前
爱sun完成签到 ,获得积分10
18秒前
20秒前
嘟嘟爱睡觉完成签到,获得积分10
20秒前
eric888应助科研通管家采纳,获得150
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
23秒前
GPTea应助科研通管家采纳,获得20
23秒前
23秒前
eric888应助科研通管家采纳,获得150
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
爆米花应助NEUROVASCULAR采纳,获得10
23秒前
23秒前
23秒前
23秒前
贺呵呵发布了新的文献求助10
24秒前
Belief完成签到,获得积分10
24秒前
25秒前
khh完成签到 ,获得积分10
25秒前
25秒前
26秒前
某人发布了新的文献求助10
26秒前
在水一方应助半喇柯基采纳,获得10
29秒前
30秒前
领导范儿应助通天塔采纳,获得10
30秒前
ph发布了新的文献求助10
33秒前
shuicaoxi发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301293
求助须知:如何正确求助?哪些是违规求助? 4448916
关于积分的说明 13847473
捐赠科研通 4334931
什么是DOI,文献DOI怎么找? 2379947
邀请新用户注册赠送积分活动 1374982
关于科研通互助平台的介绍 1340862