Caspase-3 Inhibition Prediction of Pyrrolo[3,4-c] Quinoline-1,3-Diones Derivatives Using Computational Tools

对接(动物) 生物信息学 线性回归 数量结构-活动关系 化学 变构调节 适用范围 计算生物学 喹啉 立体化学 机器学习 计算机科学 生物化学 生物 基因 护理部 医学 有机化学
作者
ana P,ey
出处
期刊:Indian Journal of Pharmaceutical Sciences [OMICS Publishing Group]
卷期号:83 (3) 被引量:1
标识
DOI:10.36468/pharmaceutical-sciences.799
摘要

In the present work, two dimensional quantitative structure activity relationship, molecular docking and absorption, distribution, metabolism, excretion and toxicity analyses were performed to pyrrolo[3,4-c] quinoline-1,3-diones derivatives, previously reported as caspase-3 inhibitors. A total of one hundred fifteen compounds were used to build linear multiple linear regression (multiple linear regression) and non-linear (artificial neural networks) quantitative structure activity relationship models, using genetic algorithm as a feature selection method. Both models were thoroughly validated following Organization for economic cooperation and development principles by internal and external validation as well as the domain of application (antiphase domain). Both Genetic algorithm-multiple linear regression (Rtrain=0.88, Rtest=0.94, mapetest=5.3 and rmsetest=0.41) and Genetic algorithm-artificial neural network (Rtrain=0.9, Rtest=0.93, mapetest=4.5 and rmsetest=0.4) models are statistically robust with high external predictive ability. Molecular docking simulations were performed on selected inhibitors revealed that binding energy values are in accordance with inhibitory activity values against caspase-3, which is modulated by hydrogen bondings, Pi stacking and hydrophobic interactions. The docking studies suggest that the inhibitors bind with an allosteric site of the enzyme formed by ARG207B, SER251B, PHE250 and PHE256 of the B chain. Besides, in silico, absorption, distribution, metabolism, excretion and toxicity profiles of selected inhibitors were checked to evaluate the key pharmacokinetic, physiochemical and druglikeness features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgh发布了新的文献求助10
1秒前
1秒前
zkji完成签到,获得积分10
2秒前
我是老大应助琳琳采纳,获得10
3秒前
3秒前
丘比特应助阮楷瑞采纳,获得10
4秒前
大个应助adoretheall采纳,获得10
4秒前
问心发布了新的文献求助10
4秒前
打打应助跳跃仙人掌采纳,获得20
4秒前
小高完成签到 ,获得积分10
5秒前
ivyjianjie完成签到 ,获得积分10
6秒前
酷波er应助tutufove采纳,获得10
6秒前
6秒前
6秒前
JamesPei应助zkji采纳,获得10
7秒前
8秒前
优雅的抚琴完成签到,获得积分10
8秒前
10秒前
青空完成签到 ,获得积分10
10秒前
10发布了新的文献求助10
10秒前
九思发布了新的文献求助10
10秒前
罗大大发布了新的文献求助10
11秒前
小二郎应助ivy采纳,获得10
11秒前
NexusExplorer应助Ghooor采纳,获得10
11秒前
无花果应助体贴电源采纳,获得10
11秒前
11秒前
失眠奇迹发布了新的文献求助10
11秒前
12秒前
脑洞疼应助hearz采纳,获得10
14秒前
苗条的傲丝完成签到,获得积分10
15秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
quhayley应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919