EGTA公司
化学
钙
磷酸烯醇式丙酮酸羧化酶
钌红
生物化学
通道阻滞剂
氧化应激
一氧化氮
酶
有机化学
作者
Baoyun,Qian Qian,Xia,Li,Xiaolong,Liu,Man,Wang
出处
期刊:植物学报:英文版
日期:2015-01-01
卷期号: (6): 534-549
摘要
To understand the molecular responses of PC(Overexpressing the maize C4-pepc gene, which encodes phosphoenolpyruvate carboxylase(PEPC)), to drought stress at cell level, we analyzed changes in the levels of signaling molecules(hydrogen peroxide(H2O2), calcium ion(Ca2t), and nitric oxide(NO)) in suspension-cultured PC and wild-type(WT)rice(Oryza sativa L.) cell under drought stress induced by 20%polyethylene glycol 6000(PEG-6000). Results demonstrated that PC improved drought tolerance by enhancing antioxidant defense, retaining higher relative water content, survival percentages, and dry weight of cells. In addition, PEPC activity in PC under PEG treatment was strengthened by addition of H2O2 inhibitor, dimethylthiourea(DMTU) and NO synthesis inhibitor, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(c PTIO), respectively, while that in PC was weakened by addition of free calcium chelator, ethylene glycol-bis(b-aminoethylether)-N,N,N0,N0-tetraacetic acid(EGTA)t calcium channel outflow inhibitor, ruthenium red(RR) t plasma membrane channel blocker La(NO3)3, but EGTA t RR did Reseanot. Results also showed that NO and Ca2 twas lying downstream of H2O2 in drought-induced signaling. Calcium ion was also involved in the expression of C4-pepc in PC. These results suggested that PC could improve oxidative tolerance in suspension-cultured cells and the acquisition of this tolerance required downregulation of H2O2 and the entry of extracellular Ca2 tinto cells across the plasma membrane for regulation of PEPC activity and C4-pepc expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI