Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology

方案(数学) 资源(消歧) 计算机科学 个性化学习 人工智能 教育资源 机器学习 合作学习 心理学 数学教育 教学方法 开放式学习 数学分析 计算机网络 教育学 数学
作者
Xin Wei,Shiyun Sun,Dan Wu,Liang Zhou
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:12 被引量:19
标识
DOI:10.3389/fpsyg.2021.767837
摘要

The objective of the study is to explore an effective way for providing students with the appropriate learning resources in the remote education scenario. Artificial intelligence (AI) technology and educational psychology theory are applied for designing a personalized online learning resource recommendation scheme to improve students' learning outcomes. First, according to educational psychology, students' learning ability can be obtained by analyzing their learning behaviors. Their identities can be classified into three main groups. Then, features of learning resources such as difficulty degree are extracted, and a LinUCB-based learning resource recommendation algorithm is proposed. In this algorithm, a personalized exploration coefficient is carefully constructed according to student's ability and attention scores. It can adaptively adjust the ratio of exploration and exploitation during recommendation. Finally, experiments are conducted for evaluating the superior performance of the proposed scheme. The experimental results show that the proposed recommendation scheme can find appropriate learning resources which will match the student's ability and satisfy the student's personalized demands. Meanwhile, by comparing with existing state-of-the-art recommendation schemes, the proposed scheme can achieve accurate recommendations, so as to provide students with the most suitable online learning resources and reduce the risk brought by exploration. Therefore, the proposed scheme can not only control the difficulty degree of learning resources within the student's ability but also encourage their potential by providing suitable learning resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就映秋发布了新的文献求助30
刚刚
科研通AI2S应助坤坤采纳,获得10
刚刚
整齐芷文完成签到,获得积分10
1秒前
科研通AI5应助小马哥36采纳,获得10
1秒前
灵巧荆发布了新的文献求助10
2秒前
小二郎应助侦察兵采纳,获得10
2秒前
爆米花完成签到 ,获得积分10
2秒前
今后应助Evan123采纳,获得10
2秒前
凤凰之玉完成签到 ,获得积分10
3秒前
shi hui应助冬瓜炖排骨采纳,获得10
3秒前
4秒前
dyh6802发布了新的文献求助10
4秒前
冷静雅青发布了新的文献求助10
4秒前
CipherSage应助猪猪hero采纳,获得10
5秒前
领导范儿应助不凡采纳,获得30
5秒前
顾矜应助坚定的亦绿采纳,获得10
6秒前
6秒前
yu完成签到,获得积分10
6秒前
Chris完成签到,获得积分10
7秒前
cookie发布了新的文献求助10
8秒前
胖仔完成签到,获得积分10
8秒前
Chan0501完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
duxinyue发布了新的文献求助10
10秒前
汉堡转转转完成签到,获得积分10
11秒前
喵酱发布了新的文献求助30
11秒前
6666完成签到,获得积分10
11秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
12秒前
wjn完成签到,获得积分10
12秒前
13秒前
竹子完成签到,获得积分10
13秒前
MAKEYF完成签到 ,获得积分10
13秒前
14秒前
Owen应助猪猪hero采纳,获得10
14秒前
15秒前
CipherSage应助海棠yiyi采纳,获得50
16秒前
Khr1stINK发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794