Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology

方案(数学) 资源(消歧) 计算机科学 个性化学习 人工智能 教育资源 机器学习 合作学习 心理学 数学教育 教学方法 开放式学习 数学分析 计算机网络 教育学 数学
作者
Xin Wei,Shiyun Sun,Dan Wu,Liang Zhou
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:12 被引量:19
标识
DOI:10.3389/fpsyg.2021.767837
摘要

The objective of the study is to explore an effective way for providing students with the appropriate learning resources in the remote education scenario. Artificial intelligence (AI) technology and educational psychology theory are applied for designing a personalized online learning resource recommendation scheme to improve students' learning outcomes. First, according to educational psychology, students' learning ability can be obtained by analyzing their learning behaviors. Their identities can be classified into three main groups. Then, features of learning resources such as difficulty degree are extracted, and a LinUCB-based learning resource recommendation algorithm is proposed. In this algorithm, a personalized exploration coefficient is carefully constructed according to student's ability and attention scores. It can adaptively adjust the ratio of exploration and exploitation during recommendation. Finally, experiments are conducted for evaluating the superior performance of the proposed scheme. The experimental results show that the proposed recommendation scheme can find appropriate learning resources which will match the student's ability and satisfy the student's personalized demands. Meanwhile, by comparing with existing state-of-the-art recommendation schemes, the proposed scheme can achieve accurate recommendations, so as to provide students with the most suitable online learning resources and reduce the risk brought by exploration. Therefore, the proposed scheme can not only control the difficulty degree of learning resources within the student's ability but also encourage their potential by providing suitable learning resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸晓曼发布了新的文献求助10
刚刚
lzzk完成签到,获得积分10
刚刚
期待着完成签到,获得积分10
刚刚
安心完成签到,获得积分10
刚刚
qq发布了新的文献求助10
1秒前
高大怀梦完成签到,获得积分10
1秒前
一二完成签到 ,获得积分10
1秒前
斯文败类应助酷炫的水蓝采纳,获得10
2秒前
listen发布了新的文献求助10
2秒前
罗嘉逸发布了新的文献求助10
2秒前
共享精神应助耍酷以柳采纳,获得10
2秒前
3秒前
4秒前
cuber完成签到 ,获得积分10
4秒前
阿甘完成签到,获得积分10
4秒前
5秒前
5秒前
Ava应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
清脆的猕猴桃完成签到,获得积分10
7秒前
8秒前
8秒前
彭于晏应助飘逸晓曼采纳,获得10
9秒前
nianlun发布了新的文献求助10
10秒前
jzy发布了新的文献求助10
10秒前
Aurora发布了新的文献求助10
10秒前
岳苏佳完成签到,获得积分10
11秒前
Hello应助geyuanhong采纳,获得10
11秒前
边瑞明完成签到,获得积分10
13秒前
研友_诺发布了新的文献求助30
13秒前
糊涂的勒发布了新的文献求助30
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328