Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology

方案(数学) 资源(消歧) 计算机科学 个性化学习 人工智能 教育资源 机器学习 合作学习 心理学 数学教育 教学方法 开放式学习 教育学 计算机网络 数学 数学分析
作者
Xin Wei,Shiyun Sun,Dan Wu,Liang Zhou
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:12 被引量:19
标识
DOI:10.3389/fpsyg.2021.767837
摘要

The objective of the study is to explore an effective way for providing students with the appropriate learning resources in the remote education scenario. Artificial intelligence (AI) technology and educational psychology theory are applied for designing a personalized online learning resource recommendation scheme to improve students' learning outcomes. First, according to educational psychology, students' learning ability can be obtained by analyzing their learning behaviors. Their identities can be classified into three main groups. Then, features of learning resources such as difficulty degree are extracted, and a LinUCB-based learning resource recommendation algorithm is proposed. In this algorithm, a personalized exploration coefficient is carefully constructed according to student's ability and attention scores. It can adaptively adjust the ratio of exploration and exploitation during recommendation. Finally, experiments are conducted for evaluating the superior performance of the proposed scheme. The experimental results show that the proposed recommendation scheme can find appropriate learning resources which will match the student's ability and satisfy the student's personalized demands. Meanwhile, by comparing with existing state-of-the-art recommendation schemes, the proposed scheme can achieve accurate recommendations, so as to provide students with the most suitable online learning resources and reduce the risk brought by exploration. Therefore, the proposed scheme can not only control the difficulty degree of learning resources within the student's ability but also encourage their potential by providing suitable learning resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜发布了新的文献求助10
1秒前
zh发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
平常映雁完成签到,获得积分10
2秒前
Salt_fish发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
无人自香发布了新的文献求助10
4秒前
4秒前
blackspiderman完成签到,获得积分20
5秒前
李爱国应助x1采纳,获得10
5秒前
小包Gn发布了新的文献求助10
6秒前
AdventureChen完成签到 ,获得积分10
6秒前
ccc发布了新的文献求助10
7秒前
徐磊完成签到,获得积分10
8秒前
ayayaya发布了新的文献求助10
8秒前
8秒前
8秒前
清爽代芹完成签到,获得积分10
8秒前
Ll完成签到,获得积分10
9秒前
123456完成签到,获得积分10
9秒前
xiao xu完成签到 ,获得积分10
9秒前
科研通AI6应助脑洞大开采纳,获得10
9秒前
9秒前
11秒前
陈颖完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
对对碰发布了新的文献求助10
13秒前
石榴完成签到,获得积分10
14秒前
Owen应助靓仔采纳,获得10
14秒前
落花生发布了新的文献求助10
15秒前
15秒前
Andy_Cheung应助大海捞针2025采纳,获得10
15秒前
LX有理想完成签到 ,获得积分10
15秒前
烟花应助聪明的雁凡采纳,获得10
15秒前
15秒前
头哥应助Repro采纳,获得10
16秒前
16秒前
搜集达人应助syn采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503