Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology

方案(数学) 资源(消歧) 计算机科学 个性化学习 人工智能 教育资源 机器学习 合作学习 心理学 数学教育 教学方法 开放式学习 教育学 计算机网络 数学 数学分析
作者
Xin Wei,Shiyun Sun,Dan Wu,Liang Zhou
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:12 被引量:19
标识
DOI:10.3389/fpsyg.2021.767837
摘要

The objective of the study is to explore an effective way for providing students with the appropriate learning resources in the remote education scenario. Artificial intelligence (AI) technology and educational psychology theory are applied for designing a personalized online learning resource recommendation scheme to improve students' learning outcomes. First, according to educational psychology, students' learning ability can be obtained by analyzing their learning behaviors. Their identities can be classified into three main groups. Then, features of learning resources such as difficulty degree are extracted, and a LinUCB-based learning resource recommendation algorithm is proposed. In this algorithm, a personalized exploration coefficient is carefully constructed according to student's ability and attention scores. It can adaptively adjust the ratio of exploration and exploitation during recommendation. Finally, experiments are conducted for evaluating the superior performance of the proposed scheme. The experimental results show that the proposed recommendation scheme can find appropriate learning resources which will match the student's ability and satisfy the student's personalized demands. Meanwhile, by comparing with existing state-of-the-art recommendation schemes, the proposed scheme can achieve accurate recommendations, so as to provide students with the most suitable online learning resources and reduce the risk brought by exploration. Therefore, the proposed scheme can not only control the difficulty degree of learning resources within the student's ability but also encourage their potential by providing suitable learning resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷以晴发布了新的文献求助10
刚刚
凌云完成签到,获得积分10
刚刚
橙子发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
赫赛汀耐药完成签到,获得积分10
1秒前
枸橼酸发布了新的文献求助10
2秒前
三十三天完成签到,获得积分10
2秒前
2秒前
muzi完成签到,获得积分10
3秒前
尔尔发布了新的文献求助10
3秒前
开朗寇发布了新的文献求助20
3秒前
faiting发布了新的文献求助10
3秒前
yang发布了新的文献求助10
3秒前
yanyan完成签到,获得积分10
3秒前
我是老大应助小晴天采纳,获得10
3秒前
fg2477发布了新的文献求助30
4秒前
彪yu发布了新的文献求助10
4秒前
quxiaofei发布了新的文献求助10
4秒前
cc完成签到,获得积分20
4秒前
思源应助HelloWORLD采纳,获得10
4秒前
我是老大应助lune采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI6应助wu采纳,获得10
6秒前
帅气的冰颜完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
醉意拥桃枝完成签到 ,获得积分10
6秒前
6秒前
chu完成签到,获得积分20
6秒前
孟孟完成签到,获得积分20
6秒前
Ryan0824发布了新的文献求助10
7秒前
7秒前
7秒前
枸橼酸完成签到,获得积分10
7秒前
Jared应助sunyanghu369采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285