Numerical simulation of a confined cavitating gas bubble driven by ultrasound

物理 气泡 机械 空化 喷射(流体) 流入 流量(数学) 超声波传感器 经典力学 声学
作者
J. F. Mifsud,Duncan A. Lockerby,Yongmann M. Chung,Gordon Jones
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:20
标识
DOI:10.1063/5.0075280
摘要

This work investigates the flow disturbance generated by an ultrasonically driven gas bubble confined in a narrow gap over one acoustic cycle. Here, we provide a more accurate representation of ultrasonic cleaning by implementing a volume-of-fluid model in OpenFOAM that simulates the ultrasound as a sinusoidally time-varying pressure boundary condition. A modified Rayleigh–Plesset equation is solved to select an acoustic forcing that instigates bubble collapse. Simulations reveal the interaction between the inflow from the acoustic forcing and the flow deflected by the confining walls intensifies the strength of the self-piercing micro-jet(s), and consequently of the unsteady boundary layer flow, compared to the traditional collapse near a single rigid wall. Depending on the gap height and the position of bubble inception inside the gap, three distinct collapse regimes involving dual-jets or directed-jets are identified, each resulting in a different shear-stress footprint on the confining boundaries. Plots of the spatiotemporal evolution of the shear flow (that is difficult to measure experimentally) reveal peak shear-stress magnitudes at collapse that are double those reported for an undriven laser-induced bubble in similar geometric confinement. This twofold increase is attributed to the ultrasonic signal driving the collapse. Surprisingly, in our simulations we have not encountered a transferred-jet regime previously observed for an unforced bubble collapsing in a similar configuration. This unexpected finding highlights the different physics involved in modeling acoustically driven bubbles compared with the conventional laser-induced bubbles used in experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
佰斯特威应助不安青牛采纳,获得10
1秒前
背理完成签到,获得积分10
2秒前
壮观百招发布了新的文献求助10
2秒前
猪咪发布了新的文献求助10
3秒前
通天塔完成签到,获得积分10
3秒前
安静严青发布了新的文献求助10
4秒前
旧漏鱼完成签到,获得积分10
4秒前
笑而不语完成签到 ,获得积分10
5秒前
5秒前
李健的粉丝团团长应助Loik采纳,获得10
6秒前
乐乐应助你好吗采纳,获得10
7秒前
庄彧完成签到 ,获得积分10
7秒前
天天快乐应助islazheng采纳,获得10
7秒前
9秒前
10秒前
光亮元枫发布了新的文献求助10
10秒前
19950728完成签到 ,获得积分10
11秒前
在水一方应助KKK采纳,获得10
12秒前
温婉的从凝完成签到,获得积分10
12秒前
万能图书馆应助壮观百招采纳,获得10
12秒前
田様应助安静严青采纳,获得10
12秒前
Liu完成签到,获得积分10
12秒前
13秒前
铲子完成签到 ,获得积分10
13秒前
体贴的采蓝完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
无心的沉鱼完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助猪咪采纳,获得10
18秒前
Akim应助乙二胺四乙酸采纳,获得10
18秒前
cugwzr完成签到,获得积分10
18秒前
Pendragon完成签到,获得积分10
18秒前
19秒前
19秒前
zhuhongxia发布了新的文献求助10
19秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773187
求助须知:如何正确求助?哪些是违规求助? 3318834
关于积分的说明 10191774
捐赠科研通 3033468
什么是DOI,文献DOI怎么找? 1664420
邀请新用户注册赠送积分活动 796239
科研通“疑难数据库(出版商)”最低求助积分说明 757330