Analyze Skin Histopathology Images Using Multiple Deep Learning Methods

组织病理学 人工智能 深度学习 计算机科学 对比度(视觉) 模式识别(心理学) 机器学习 病理 医学
作者
Peizhen Xie,Tao Li,Jie Liu,Fangfang Li,Jiao Zhou,Ke Zuo
标识
DOI:10.1109/icftic54370.2021.9647425
摘要

For melanoma diagnosis, visual analysis of skin histopathology images is the gold standard. There have been researches on deep learning-based histopathology image diagnosis. However, few studies explore the use of multiple deep learning methods to analyze histopathology images. Our research used 3 popular deep learning models, and 2 recognized training methods to analyze histopathology images. 312 histopathology images were collected from the department of dermatology in Xiangya Hospital for contrast tests. In the contrast test, three models of ResNet50, InceptionV3, and MobileNet were performed in sequence. Moreover, two training methods of transfer learning method and fully trained method were performed, respectively. Firstly, the result shows that different models with the same training method got similar performance. Secondly, the models trained by the fully trained method (the accuracy of the three models ranged from 99.78% to 99.88%) performance better than the model trained by transfer learning mode (the accuracy of the three models ranged from 96.69% to 96.81%). Therefore, deep learning is suitable for the histopathology image diagnosis of melanoma. For the same deep learning model, the fully trained method is better than transfer learning in histopathology image diagnosis of melanoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮霭沉沉应助远道采纳,获得10
1秒前
1秒前
隐形曼青应助甜甜的半仙采纳,获得10
1秒前
雨无意完成签到,获得积分10
1秒前
悦耳笑南完成签到 ,获得积分10
1秒前
爱吃橙子的草莓熊完成签到,获得积分10
2秒前
城南花已开完成签到,获得积分10
3秒前
1b完成签到,获得积分10
3秒前
领导范儿应助wocao采纳,获得10
4秒前
小蘑菇应助Felix采纳,获得10
4秒前
4秒前
树呀完成签到,获得积分10
4秒前
六零九一完成签到,获得积分10
5秒前
5秒前
悦耳笑南关注了科研通微信公众号
5秒前
biows119完成签到,获得积分0
7秒前
7秒前
云云关注了科研通微信公众号
7秒前
Gavin发布了新的文献求助10
8秒前
iufan发布了新的文献求助10
8秒前
8秒前
飘逸晓曼完成签到 ,获得积分20
9秒前
哈哈哈发布了新的文献求助20
11秒前
11秒前
Abb发布了新的文献求助10
11秒前
赘婿应助如意的向日葵采纳,获得10
11秒前
13秒前
kele发布了新的文献求助20
13秒前
13秒前
Enia完成签到,获得积分10
15秒前
田様应助iufan采纳,获得10
15秒前
找不到完成签到,获得积分0
16秒前
16秒前
16秒前
小二郎应助fang采纳,获得30
16秒前
17秒前
cxmessi26完成签到,获得积分10
17秒前
lf完成签到,获得积分10
17秒前
故酒发布了新的文献求助10
18秒前
Felix完成签到,获得积分20
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134302
求助须知:如何正确求助?哪些是违规求助? 2785212
关于积分的说明 7770748
捐赠科研通 2440808
什么是DOI,文献DOI怎么找? 1297536
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792