Fusion of acoustic and deep features for pig cough sound recognition

语音识别 模式识别(心理学) 人工智能 计算机科学 特征(语言学) 支持向量机 短时傅里叶变换 卷积神经网络 Mel倒谱 特征提取 傅里叶变换 数学 傅里叶分析 哲学 语言学 数学分析
作者
Weizheng Shen,Nan Ji,Yanling Yin,Baisheng Dai,Ding Tu,Baihui Sun,Handan Hou,Shengli Kou,Yize Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106994-106994 被引量:44
标识
DOI:10.1016/j.compag.2022.106994
摘要

The recognition of pig cough sound is a prerequisite for early warning of respiratory diseases in pig houses, which is essential for detecting animal welfare and predicting productivity. With respect to pig cough recognition, it is a highly crucial step to create representative pig sound characteristics. To this end, this paper proposed a feature fusion method by combining acoustic and deep features from audio segments. First, a set of acoustic features from different domains were extracted from sound signals, and recursive feature elimination based on random forest (RF-RFE) was adopted to conduct feature selection. Second, time-frequency representations (TFRs) involving constant-Q transform (CQT) and short-time Fourier transform (STFT) were employed to extract visual features from a fine-tuned convolutional neural network (CNN) model. Finally, the ensemble of the two kinds of features was fed into support vector machine (SVM) by early fusion to identify pig cough sounds. This work investigated the performance of the proposed acoustic and deep features fusion, which achieved 97.35% accuracy for pig cough recognition. The results provide further evidence for the effectiveness of combining acoustic and deep spectrum features as a robust feature representation for pig cough recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助义气的采文采纳,获得10
刚刚
科研通AI6应助义气的采文采纳,获得10
1秒前
Lucas应助义气的采文采纳,获得10
1秒前
在水一方应助义气的采文采纳,获得10
1秒前
Ariel完成签到,获得积分10
1秒前
1秒前
2秒前
雪白的采白完成签到,获得积分20
2秒前
2秒前
搜集达人应助Magic1987采纳,获得10
2秒前
3秒前
简简完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助sanyue采纳,获得10
4秒前
酸酸完成签到,获得积分10
5秒前
5秒前
5秒前
进击的PhD应助紧张的惜梦采纳,获得50
5秒前
qaz发布了新的文献求助10
5秒前
5秒前
yangyajie发布了新的文献求助10
6秒前
鱿鱼完成签到,获得积分10
6秒前
852应助TANG采纳,获得10
6秒前
7秒前
7秒前
打工人发布了新的文献求助10
8秒前
9秒前
orixero应助HAHA采纳,获得10
10秒前
科研通AI6应助HAHA采纳,获得10
10秒前
科研通AI6应助HAHA采纳,获得10
10秒前
传奇3应助陈灵敏采纳,获得10
10秒前
10秒前
鱿鱼发布了新的文献求助10
10秒前
想人陪的忆彤完成签到 ,获得积分10
11秒前
11秒前
12秒前
zyy发布了新的文献求助10
12秒前
12秒前
可爱的函函应助zwl采纳,获得10
13秒前
Damon完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901