Effectively capturing volatile radioiodine generated during the nuclear fission process is considered to be a safe way to the utilization of nuclear power. Here we report a new two-dimensional covalent organic framework(2D COF), ETTA-PyTTA-COF, as a highly efficient iodine adsorbent, which is constructed through the condensation reaction between 4,4′,4″,4‴-(ethene-1,1,2,2-tetrayl)-tetrabenzaldehyde(ETTA) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene(PyTTA). The ETTA-PyTTA-COF possesses a permanent 1D channel porous structure with a high Brunauer-Emmet-Teller(BET) surface area of 1519 m2/g and excellent chemical and thermal stability. It shows ultrahigh iodine adsorption capability, which can reach up to 4.6 g/g in vapor owing to its high BET surface area, large π-conjugated structure and plenty of imine groups in the skeleton of the COF as effective iodine sorption sites.