热电发电机
热电效应
材料科学
热电材料
功勋
能量转换效率
碲
稳健性(进化)
高效能源利用
热的
热稳定性
表征(材料科学)
工程物理
电
工艺工程
光电子学
核工程
计算机科学
热导率
纳米技术
复合材料
电气工程
冶金
热力学
工程类
物理
生物化学
化学
化学工程
基因
作者
Pingjun Ying,Heiko Reith,Kornelius Nielsch,Ran He
出处
期刊:Small
[Wiley]
日期:2022-04-28
卷期号:18 (24)
被引量:24
标识
DOI:10.1002/smll.202201183
摘要
Solid-state thermoelectric (TE) technology is a promising approach to harvest low-grade waste heat (<573 K) and converts it to useful electricity in industrial and civilian settings. After decades of efforts in improving the figure-of-merit (zT) of TE materials, the development of advanced modules has started springing up in recent years. Although high-performance modules have been largely reported based on the successful material improvement, it remains less investigated how and whether the module-level designs can further increase the conversion efficiency. Herein, following the recent demonstration of a tellurium (Te)-free TE generator, an increase is demonstrated in the efficiency by reducing both the electrical and thermal energy losses through simply optimizing geometric factors of filling factor and leg-pair numbers. These module-level optimizations enable a record conversion efficiency of 8.2% under a ∆T ≈ 260 K, thus fulfilling 90% of the theoretical efficiency of the materials and solidly exceeding the Bi2 Te3 modules. Furthermore, module robustness against > 10 160 thermal cycles while preserving a relative efficiency of 95% is demonstrated. These findings highlight the importance of the optimization strategy at the module level and demonstrate the feasibility of using Te-free thermoelectric compounds to harvest the omnipresent low-grade heat.
科研通智能强力驱动
Strongly Powered by AbleSci AI