Centralized and Distributed Millimeter Wave Massive MIMO-Based Data Fusion With Perfect and Bayesian Learning (BL)-Based Imperfect CSI

多输入多输出 3G多输入多输出 多用户MIMO 计算机科学 天线(收音机) 假警报 空间复用 信道状态信息 聚变中心 电子工程 频道(广播) 算法 无线 电信 工程类 机器学习 认知无线电
作者
Apoorva Chawla,Palla Siva Kumar,Suraj Srivastava,Aditya K. Jagannatham
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 1777-1791 被引量:9
标识
DOI:10.1109/tcomm.2022.3141411
摘要

This paper presents low-complexity decision rules as well as the pertinent analysis for data fusion in millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) wireless sensor networks (WSNs). The proposed framework considers both unknown and known parameter scenarios, and the spatial correlation arising due to close proximity of the sensors for both the centralized MIMO (C-MIMO) and distributed MIMO (D-MIMO) antenna configurations. The resulting detection performance is characterized by determining the closed-form expressions of probabilities of detection and false alarm for both antenna configurations. The optimal sensor gains are also determined for both the D-MIMO and C-MIMO architectures to further improve the detection performance. Additionally, asymptotic analysis is presented for both antenna configurations to determine the power scaling laws for the mmWave massive MIMO WSN, which lead to an improved sensor battery life without sacrificing the system performance. Furthermore, decision rules are also derived along with the pertinent analysis for a practical scenario with uncertainty in the channel state information (CSI) at the fusion center, wherein CSI of the mmWave massive MIMO channel is estimated using the novel sparse Bayesian learning (SBL) framework. Simulation results are presented to illustrate the performance of the proposed schemes and to validate the analytical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彧辰完成签到 ,获得积分10
2秒前
Maxine完成签到 ,获得积分10
2秒前
小雪发布了新的文献求助50
3秒前
沐月完成签到,获得积分10
6秒前
小孩完成签到 ,获得积分10
6秒前
6秒前
勤恳雅莉应助虚幻靖易采纳,获得200
6秒前
刘钦完成签到,获得积分10
7秒前
Lucas应助科研通管家采纳,获得10
9秒前
汉堡包应助13934532358采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
完美世界应助妖妖灵采纳,获得50
9秒前
if应助科研通管家采纳,获得30
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
Nicole发布了新的文献求助10
10秒前
ding应助橙橙妈妈采纳,获得20
10秒前
勿忘完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
天真彩虹完成签到 ,获得积分0
12秒前
鳗鱼煜祺完成签到,获得积分10
12秒前
13秒前
瑞拉发布了新的文献求助10
13秒前
XX完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718