Depth of Compressive Residual Stress Enhancement In Laser Shock Peening of Power Generation Turbine blades

残余应力 喷丸 材料科学 穿透深度 残余物 喷丸 涡轮叶片 涡轮机 抗压强度 最大化 结构工程 激光器 计算机科学 机械工程 复合材料 数学 光学 工程类 算法 物理 数学优化
作者
Festus Fameso,Dawood Desai,Schalk Kok,Dylan Armfield,Mark Newby,Daniel Glaser
标识
DOI:10.1109/iceet53442.2021.9659671
摘要

Arresting the susceptibility to catastrophic failure of critical components like turbine blades has become essential and now drives research and innovation in condition-based maintenance and failure prevention in power generation turbines. Laser shock peening (LSP) is one technique which is now employed by engineers, to mitigate failure and strategically ensure the health of plant components. Over the years, research has been focused more on achieving compressive residual stress induction, with ways of enhancing the depth of penetration yet scarcely investigated. This study thus applied numerical methods to define how the various inputs affect the depth of compressive residual stress (CRS) penetration in X12Cr steel and the hierarchy of influence of the input parameters when achieving maximum depths possible, of compressive stresses, are prioritized. Commercial finite elements (FE) code was used to model LSP on X12Cr steel, a common material used in manufacturing turbine blades. Validated with experimental results, the FE code was transformed to an empirical function by data fitting and optimized using a gradient-based maximization objective algorithm. Results reveal the combination of less than 50% degree of overlaps, mid-range shot diameters, 4–6 GW/cm 2 shot intensity and prolonged peak exposure time produces enhanced penetration of compressive stresses. Furthermore, the hierarchy of influence of the five input parameters investigated, on penetration depth maximization, revealed that the degree of shot overlaps is the most influential input in this regard, followed by shot size, shot intensity, shot angle and exposure time in descending order.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮燕胖年仔完成签到,获得积分10
刚刚
刚刚
小郭发布了新的文献求助10
刚刚
刚刚
刚刚
靓丽的沁完成签到 ,获得积分10
1秒前
玄风应助JonyJie采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
山野完成签到,获得积分10
3秒前
baiyuecheng完成签到,获得积分10
3秒前
3秒前
Akim应助花楹采纳,获得10
4秒前
4秒前
FashionBoy应助奕火采纳,获得10
4秒前
SciGPT应助田20202021采纳,获得10
4秒前
4秒前
Elfin1221完成签到 ,获得积分10
4秒前
小熊发布了新的文献求助10
4秒前
韩祖完成签到 ,获得积分10
5秒前
snai1发布了新的文献求助10
5秒前
aaa发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
务实的一斩完成签到 ,获得积分10
7秒前
喵先生发布了新的文献求助10
7秒前
7秒前
得鹿梦鱼完成签到,获得积分10
7秒前
万能图书馆应助yu采纳,获得10
9秒前
朴素的11应助xingzi123采纳,获得10
9秒前
baiyuecheng发布了新的文献求助10
9秒前
华仔应助QUN采纳,获得10
10秒前
笑点低的梦槐完成签到 ,获得积分10
10秒前
10秒前
王王赵完成签到,获得积分10
10秒前
希望天下0贩的0应助时安采纳,获得10
11秒前
第3行星完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531667
求助须知:如何正确求助?哪些是违规求助? 4620468
关于积分的说明 14573518
捐赠科研通 4560191
什么是DOI,文献DOI怎么找? 2498759
邀请新用户注册赠送积分活动 1478669
关于科研通互助平台的介绍 1450015