TE-YOLOF: Tiny and efficient YOLOF for blood cell detection

计算机科学 加权 目标检测 卷积(计算机科学) 人工智能 红细胞 血细胞 领域(数学) 探测器 计算机视觉 算法 模式识别(心理学) 数学 化学 物理 人工神经网络 医学 电信 生物化学 纯数学 免疫学 声学
作者
Fanxin Xu,Xiangkui Li,Hang Yang,Yali Wang,Wei Xiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103416-103416 被引量:33
标识
DOI:10.1016/j.bspc.2021.103416
摘要

• We propose a new light-weight model based on YOLOF to solve the relatively low precision of red blood cell detection problem that the FED model faced. • We make further light-weight improvements to YOLOF, reducing the model complexity to less than 10M and improving the performance of blood cell detection. For each component we used, we have done ablation experiments to prove its advantages. • The proposed model TE-YOLOF can be generalized to other datasets for detection directly. It shows the great potential to achieve robustness in the field of blood cell detection. Blood cell detection in microscopic images is an essential branch of medical image processing research. The research and application of computer vision algorithms in this field are more concerned about the trade-off between accuracy and model complexity. The FED detector modified by YOLOv3 is a representative light-weight model to detect blood cell objects such as red blood cells, white blood cells and platelets. But the detection precision of red blood cells in the FED model is relatively low compared with platelets and white blood cells due to the imbalance distribution of different types of cells. In this research, we propose a light-weight model based on YOLOF to address the relatively low precision of red blood cell detection problem, in order to achieve the overall improvement of detection precision. This object detector is called TE-YOLOF, Tiny and Efficient YOLOF. Model light-weighting is accomplished with the excellent feature extraction capabilities of EfficientNet as backbone and the ability of the Depthwise Separable Convolution to reduce the number of parameters while maintaining precision. Furthermore, the Mish activation function is employed to increase the precision. Extensive experiments on the BCCD dataset prove the effectiveness of the proposed model, which can achieve higher precision with less parameters than FED. TE-YOLOF is also effective on other cross-domain blood cell detection experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Orange应助Dd18753801528采纳,获得10
2秒前
风轻青柠完成签到,获得积分10
3秒前
材料生发布了新的文献求助10
3秒前
my发布了新的文献求助10
4秒前
哆啦B梦完成签到,获得积分10
4秒前
4秒前
gusgusgus发布了新的文献求助10
4秒前
5秒前
追风少年发布了新的文献求助10
5秒前
5秒前
蔚蓝发布了新的文献求助10
6秒前
艺玲发布了新的文献求助10
8秒前
正常发布了新的文献求助10
8秒前
多多肉完成签到,获得积分10
8秒前
有点儿微胖完成签到,获得积分10
9秒前
豆4799完成签到,获得积分10
11秒前
ruby关注了科研通微信公众号
12秒前
JUGG发布了新的文献求助10
12秒前
牛马鹅完成签到,获得积分20
12秒前
gusgusgus完成签到,获得积分10
14秒前
Zy发布了新的文献求助10
15秒前
16秒前
16秒前
一平方米的大草原完成签到 ,获得积分10
17秒前
QINXIAOTONG完成签到,获得积分10
18秒前
Owen应助12123浪采纳,获得10
18秒前
lele完成签到,获得积分10
19秒前
我是老大应助大海捞针2025采纳,获得10
20秒前
华仔应助沉静弘文采纳,获得10
20秒前
20秒前
21秒前
李健应助tanfor采纳,获得10
21秒前
英俊的铭应助直率的雪巧采纳,获得10
22秒前
24秒前
啦啦啦完成签到 ,获得积分10
24秒前
lionel发布了新的文献求助10
25秒前
26秒前
渴望者发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164