TE-YOLOF: Tiny and efficient YOLOF for blood cell detection

计算机科学 加权 目标检测 卷积(计算机科学) 人工智能 红细胞 血细胞 领域(数学) 探测器 计算机视觉 算法 模式识别(心理学) 数学 化学 物理 人工神经网络 医学 电信 生物化学 免疫学 声学 纯数学
作者
Fanxin Xu,Xiangkui Li,Hang Yang,Yali Wang,Wei Xiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103416-103416 被引量:33
标识
DOI:10.1016/j.bspc.2021.103416
摘要

• We propose a new light-weight model based on YOLOF to solve the relatively low precision of red blood cell detection problem that the FED model faced. • We make further light-weight improvements to YOLOF, reducing the model complexity to less than 10M and improving the performance of blood cell detection. For each component we used, we have done ablation experiments to prove its advantages. • The proposed model TE-YOLOF can be generalized to other datasets for detection directly. It shows the great potential to achieve robustness in the field of blood cell detection. Blood cell detection in microscopic images is an essential branch of medical image processing research. The research and application of computer vision algorithms in this field are more concerned about the trade-off between accuracy and model complexity. The FED detector modified by YOLOv3 is a representative light-weight model to detect blood cell objects such as red blood cells, white blood cells and platelets. But the detection precision of red blood cells in the FED model is relatively low compared with platelets and white blood cells due to the imbalance distribution of different types of cells. In this research, we propose a light-weight model based on YOLOF to address the relatively low precision of red blood cell detection problem, in order to achieve the overall improvement of detection precision. This object detector is called TE-YOLOF, Tiny and Efficient YOLOF. Model light-weighting is accomplished with the excellent feature extraction capabilities of EfficientNet as backbone and the ability of the Depthwise Separable Convolution to reduce the number of parameters while maintaining precision. Furthermore, the Mish activation function is employed to increase the precision. Extensive experiments on the BCCD dataset prove the effectiveness of the proposed model, which can achieve higher precision with less parameters than FED. TE-YOLOF is also effective on other cross-domain blood cell detection experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
y9gyn_37完成签到,获得积分10
刚刚
wwq完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
领导范儿应助大气思柔采纳,获得10
1秒前
橘子屿布丁完成签到,获得积分10
1秒前
1秒前
凌发完成签到,获得积分10
1秒前
sxpab完成签到,获得积分10
1秒前
Stefano发布了新的文献求助10
1秒前
loey完成签到,获得积分10
1秒前
wu完成签到,获得积分10
1秒前
2秒前
清新的苑博完成签到,获得积分10
2秒前
wanci应助欢呼的开山采纳,获得10
2秒前
山神厘子完成签到,获得积分10
2秒前
3秒前
反证谁能想的到完成签到 ,获得积分10
3秒前
3秒前
乌鱼子完成签到 ,获得积分10
3秒前
完美世界应助川川采纳,获得10
4秒前
喜悦的绮露完成签到 ,获得积分10
4秒前
4秒前
KaiZI完成签到,获得积分10
4秒前
4秒前
fairy完成签到,获得积分10
5秒前
北越城主发布了新的文献求助30
5秒前
韩璐发布了新的文献求助10
5秒前
情怀应助洛尚采纳,获得10
5秒前
cola完成签到,获得积分10
6秒前
yy111发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
悲凉的小鸭子完成签到,获得积分10
7秒前
7秒前
7秒前
Stefano完成签到,获得积分10
8秒前
8秒前
缥缈的忆山完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297