亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TE-YOLOF: Tiny and efficient YOLOF for blood cell detection

计算机科学 加权 目标检测 卷积(计算机科学) 人工智能 红细胞 血细胞 领域(数学) 探测器 计算机视觉 算法 模式识别(心理学) 数学 化学 物理 人工神经网络 医学 电信 生物化学 免疫学 声学 纯数学
作者
Fanxin Xu,Xiangkui Li,Hang Yang,Yali Wang,Wei Xiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103416-103416 被引量:33
标识
DOI:10.1016/j.bspc.2021.103416
摘要

• We propose a new light-weight model based on YOLOF to solve the relatively low precision of red blood cell detection problem that the FED model faced. • We make further light-weight improvements to YOLOF, reducing the model complexity to less than 10M and improving the performance of blood cell detection. For each component we used, we have done ablation experiments to prove its advantages. • The proposed model TE-YOLOF can be generalized to other datasets for detection directly. It shows the great potential to achieve robustness in the field of blood cell detection. Blood cell detection in microscopic images is an essential branch of medical image processing research. The research and application of computer vision algorithms in this field are more concerned about the trade-off between accuracy and model complexity. The FED detector modified by YOLOv3 is a representative light-weight model to detect blood cell objects such as red blood cells, white blood cells and platelets. But the detection precision of red blood cells in the FED model is relatively low compared with platelets and white blood cells due to the imbalance distribution of different types of cells. In this research, we propose a light-weight model based on YOLOF to address the relatively low precision of red blood cell detection problem, in order to achieve the overall improvement of detection precision. This object detector is called TE-YOLOF, Tiny and Efficient YOLOF. Model light-weighting is accomplished with the excellent feature extraction capabilities of EfficientNet as backbone and the ability of the Depthwise Separable Convolution to reduce the number of parameters while maintaining precision. Furthermore, the Mish activation function is employed to increase the precision. Extensive experiments on the BCCD dataset prove the effectiveness of the proposed model, which can achieve higher precision with less parameters than FED. TE-YOLOF is also effective on other cross-domain blood cell detection experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
趁微风不躁完成签到,获得积分10
37秒前
大力不评发布了新的文献求助10
41秒前
TXZ06完成签到,获得积分10
51秒前
53秒前
科研通AI2S应助spark采纳,获得10
57秒前
大力不评完成签到,获得积分20
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
haoqingyun发布了新的文献求助10
2分钟前
hanwei_mei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hanwei_mei完成签到,获得积分10
2分钟前
haoqingyun发布了新的文献求助10
3分钟前
CodeCraft应助腼腆的月亮采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助wuran采纳,获得10
3分钟前
haoqingyun完成签到,获得积分10
3分钟前
搔扒完成签到,获得积分10
4分钟前
大熊完成签到 ,获得积分10
4分钟前
sy完成签到 ,获得积分10
4分钟前
情怀应助安详的面包采纳,获得10
4分钟前
qqq完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
远方完成签到,获得积分10
5分钟前
浮游应助wuran采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
7分钟前
佳佳发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Akim应助佳佳采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585