Generating future fundus images for early age-related macular degeneration based on generative adversarial networks

德鲁森 眼底(子宫) 黄斑变性 人工智能 计算机科学 深度学习 生成对抗网络 计算机视觉 眼科 医学
作者
Quang Trung Pham,Sang-Il Ahn,Jitae Shin,Su Jeong Song
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:216: 106648-106648 被引量:24
标识
DOI:10.1016/j.cmpb.2022.106648
摘要

Age-related macular degeneration (AMD) is one of the most common diseases that can lead to blindness worldwide. Recently, various fundus image analyzing studies are done using deep learning methods to classify fundus images to aid diagnosis and monitor AMD disease progression. But until now, to the best of our knowledge, no attempt was made to generate future synthesized fundus images that can predict AMD progression. In this paper, we developed a deep learning model using fundus images for AMD patients with different time elapses to generate synthetic future fundus images.We exploit generative adversarial networks (GANs) with additional drusen masks to maintain the pathological information. The dataset included 8196 fundus images from 1263 AMD patients. A proposed GAN-based model, called Multi-Modal GAN (MuMo-GAN), was trained to generate synthetic predicted-future fundus images.The proposed deep learning model indicates that the additional drusen masks can help to learn the AMD progression. Our model can generate future fundus images with appropriate pathological features. The drusen development over time is depicted well. Both qualitative and quantitative experiments show that our model is more efficient to monitor the AMD disease as compared to other studies.This study could help individualized risk prediction for AMD patients. Compared to existing methods, the experimental results show a significant improvement in terms of tracking the AMD stage in both image-level and pixel-level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助轻松的万恶采纳,获得10
刚刚
1秒前
www发布了新的文献求助10
1秒前
研友_VZG64n发布了新的文献求助10
2秒前
2秒前
光光完成签到,获得积分10
3秒前
slp123456完成签到,获得积分20
3秒前
4秒前
1234发布了新的文献求助10
4秒前
无花果应助一鸣采纳,获得10
5秒前
5秒前
6秒前
时米米米发布了新的文献求助10
6秒前
大模型应助xinying采纳,获得10
6秒前
7秒前
7秒前
陌生完成签到 ,获得积分10
8秒前
领导范儿应助淡然的夜柳采纳,获得10
8秒前
9秒前
12秒前
JamesPei应助1234645678采纳,获得10
13秒前
13秒前
小二郎应助小盼虫采纳,获得10
13秒前
13秒前
14秒前
ttm发布了新的文献求助30
14秒前
蜡笔完成签到,获得积分10
15秒前
大个应助邹鹏采纳,获得10
15秒前
15秒前
16秒前
机智雪糕发布了新的文献求助20
17秒前
mnliao完成签到,获得积分10
17秒前
18秒前
18秒前
无尘发布了新的文献求助10
18秒前
19秒前
20秒前
bai发布了新的文献求助10
20秒前
轻松的万恶完成签到,获得积分20
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788