Generating future fundus images for early age-related macular degeneration based on generative adversarial networks

德鲁森 眼底(子宫) 黄斑变性 人工智能 计算机科学 深度学习 生成对抗网络 计算机视觉 眼科 医学
作者
Quang Trung Pham,Sang-Il Ahn,Jitae Shin,Su Jeong Song
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:216: 106648-106648 被引量:36
标识
DOI:10.1016/j.cmpb.2022.106648
摘要

Age-related macular degeneration (AMD) is one of the most common diseases that can lead to blindness worldwide. Recently, various fundus image analyzing studies are done using deep learning methods to classify fundus images to aid diagnosis and monitor AMD disease progression. But until now, to the best of our knowledge, no attempt was made to generate future synthesized fundus images that can predict AMD progression. In this paper, we developed a deep learning model using fundus images for AMD patients with different time elapses to generate synthetic future fundus images.We exploit generative adversarial networks (GANs) with additional drusen masks to maintain the pathological information. The dataset included 8196 fundus images from 1263 AMD patients. A proposed GAN-based model, called Multi-Modal GAN (MuMo-GAN), was trained to generate synthetic predicted-future fundus images.The proposed deep learning model indicates that the additional drusen masks can help to learn the AMD progression. Our model can generate future fundus images with appropriate pathological features. The drusen development over time is depicted well. Both qualitative and quantitative experiments show that our model is more efficient to monitor the AMD disease as compared to other studies.This study could help individualized risk prediction for AMD patients. Compared to existing methods, the experimental results show a significant improvement in terms of tracking the AMD stage in both image-level and pixel-level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优雅老六发布了新的文献求助10
3秒前
3秒前
4秒前
Irene_Y完成签到,获得积分10
5秒前
wei发布了新的文献求助10
5秒前
gabee完成签到 ,获得积分10
7秒前
CipherSage应助秋浱采纳,获得10
7秒前
7秒前
彭于晏应助a1423072381采纳,获得10
7秒前
mumu完成签到,获得积分10
8秒前
光亮的胡萝卜完成签到,获得积分10
8秒前
dream177777发布了新的文献求助10
9秒前
水怪啊发布了新的文献求助10
11秒前
sunflower完成签到,获得积分10
11秒前
12秒前
12秒前
哈哈哈完成签到,获得积分10
12秒前
自觉一德发布了新的文献求助10
13秒前
wang洁发布了新的文献求助30
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
GKING发布了新的文献求助10
16秒前
英姑应助龙城小坏蛋采纳,获得10
16秒前
17秒前
曦耀发布了新的文献求助10
17秒前
xixi发布了新的文献求助10
19秒前
完美世界应助优雅老六采纳,获得10
20秒前
李健的小迷弟应助David采纳,获得10
20秒前
k_1发布了新的文献求助10
20秒前
星辰大海应助知性的夏之采纳,获得10
21秒前
Mandy完成签到,获得积分10
21秒前
21秒前
香蕉觅云应助YUMI采纳,获得10
21秒前
水怪啊完成签到,获得积分10
23秒前
小米完成签到,获得积分10
24秒前
杨德凯完成签到,获得积分10
24秒前
25秒前
喈喈青鸟完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548