Generating future fundus images for early age-related macular degeneration based on generative adversarial networks

德鲁森 眼底(子宫) 黄斑变性 人工智能 计算机科学 深度学习 生成对抗网络 计算机视觉 眼科 医学
作者
Quang Trung Pham,Sangtae Ahn,Jitae Shin,Su Jeong Song
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:216: 106648-106648 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106648
摘要

Age-related macular degeneration (AMD) is one of the most common diseases that can lead to blindness worldwide. Recently, various fundus image analyzing studies are done using deep learning methods to classify fundus images to aid diagnosis and monitor AMD disease progression. But until now, to the best of our knowledge, no attempt was made to generate future synthesized fundus images that can predict AMD progression. In this paper, we developed a deep learning model using fundus images for AMD patients with different time elapses to generate synthetic future fundus images.We exploit generative adversarial networks (GANs) with additional drusen masks to maintain the pathological information. The dataset included 8196 fundus images from 1263 AMD patients. A proposed GAN-based model, called Multi-Modal GAN (MuMo-GAN), was trained to generate synthetic predicted-future fundus images.The proposed deep learning model indicates that the additional drusen masks can help to learn the AMD progression. Our model can generate future fundus images with appropriate pathological features. The drusen development over time is depicted well. Both qualitative and quantitative experiments show that our model is more efficient to monitor the AMD disease as compared to other studies.This study could help individualized risk prediction for AMD patients. Compared to existing methods, the experimental results show a significant improvement in terms of tracking the AMD stage in both image-level and pixel-level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dffwlj发布了新的文献求助10
刚刚
刚刚
刚刚
比巴卜发布了新的文献求助20
1秒前
2秒前
李欣宇发布了新的文献求助10
3秒前
peikyang发布了新的文献求助10
7秒前
雨霖铃完成签到 ,获得积分10
7秒前
HHHhhhh应助如意的擎宇采纳,获得20
7秒前
小蘑菇应助昏睡的汉堡采纳,获得10
8秒前
8秒前
xue完成签到 ,获得积分10
12秒前
A1234发布了新的文献求助10
13秒前
14秒前
hh发布了新的文献求助20
14秒前
FashionBoy应助123采纳,获得10
20秒前
peikyang完成签到,获得积分10
21秒前
22秒前
blanche发布了新的文献求助10
22秒前
plh完成签到,获得积分0
23秒前
伶俐的如松完成签到 ,获得积分10
24秒前
传统的平安完成签到,获得积分20
24秒前
郭富城完成签到,获得积分10
24秒前
十有八九完成签到,获得积分10
25秒前
kekao发布了新的文献求助10
26秒前
27秒前
27秒前
天然呆的花生关注了科研通微信公众号
28秒前
29秒前
29秒前
搜集达人应助amber采纳,获得10
31秒前
小马甲应助相识采纳,获得10
32秒前
32秒前
32秒前
32秒前
34秒前
LinglongCai完成签到 ,获得积分10
34秒前
cille发布了新的文献求助10
34秒前
嗯哼应助比巴卜采纳,获得20
35秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076162
求助须知:如何正确求助?哪些是违规求助? 2729044
关于积分的说明 7507177
捐赠科研通 2377267
什么是DOI,文献DOI怎么找? 1260526
科研通“疑难数据库(出版商)”最低求助积分说明 611000
版权声明 597164