Generating future fundus images for early age-related macular degeneration based on generative adversarial networks

德鲁森 眼底(子宫) 黄斑变性 人工智能 计算机科学 深度学习 生成对抗网络 计算机视觉 眼科 医学
作者
Quang Trung Pham,Sang-Il Ahn,Jitae Shin,Su Jeong Song
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:216: 106648-106648 被引量:36
标识
DOI:10.1016/j.cmpb.2022.106648
摘要

Age-related macular degeneration (AMD) is one of the most common diseases that can lead to blindness worldwide. Recently, various fundus image analyzing studies are done using deep learning methods to classify fundus images to aid diagnosis and monitor AMD disease progression. But until now, to the best of our knowledge, no attempt was made to generate future synthesized fundus images that can predict AMD progression. In this paper, we developed a deep learning model using fundus images for AMD patients with different time elapses to generate synthetic future fundus images.We exploit generative adversarial networks (GANs) with additional drusen masks to maintain the pathological information. The dataset included 8196 fundus images from 1263 AMD patients. A proposed GAN-based model, called Multi-Modal GAN (MuMo-GAN), was trained to generate synthetic predicted-future fundus images.The proposed deep learning model indicates that the additional drusen masks can help to learn the AMD progression. Our model can generate future fundus images with appropriate pathological features. The drusen development over time is depicted well. Both qualitative and quantitative experiments show that our model is more efficient to monitor the AMD disease as compared to other studies.This study could help individualized risk prediction for AMD patients. Compared to existing methods, the experimental results show a significant improvement in terms of tracking the AMD stage in both image-level and pixel-level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
epsilonN完成签到 ,获得积分10
刚刚
oo完成签到,获得积分10
刚刚
YUAN完成签到,获得积分10
刚刚
正方形劈盐子完成签到,获得积分10
1秒前
1秒前
ArCaaaat完成签到,获得积分10
2秒前
Aliothae完成签到,获得积分10
4秒前
月亮完成签到 ,获得积分10
4秒前
weddcf发布了新的文献求助10
5秒前
5秒前
义气的元绿完成签到,获得积分10
6秒前
ArCaaaat发布了新的文献求助10
6秒前
ding应助吴学仕采纳,获得10
8秒前
汉堡包应助suchui采纳,获得10
9秒前
11秒前
希希发布了新的文献求助10
11秒前
余姓懒完成签到,获得积分10
11秒前
Light完成签到,获得积分10
13秒前
13秒前
善学以致用应助LaLune采纳,获得10
14秒前
又夏完成签到,获得积分10
14秒前
FashionBoy应助明明采纳,获得10
14秒前
往徕完成签到,获得积分10
15秒前
搜集达人应助ziyue采纳,获得10
16秒前
doctorw发布了新的文献求助10
16秒前
17秒前
17秒前
雪白发卡完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
LaInh完成签到,获得积分10
19秒前
一一应助看文献了采纳,获得10
19秒前
大个应助ziyue采纳,获得10
20秒前
21秒前
LaInh发布了新的文献求助10
21秒前
塔塔饼完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
zzg完成签到,获得积分20
25秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712