自编码
还原(数学)
放大器
计算机科学
编码器
非线性失真
失真(音乐)
误码率
电子工程
功率(物理)
人工神经网络
编码
算法
人工智能
解码方法
电信
数学
工程类
物理
化学
生物化学
几何学
带宽(计算)
量子力学
基因
操作系统
作者
Hao Lu,Yu Zhou,Yue Liu,Rui Li,Ning Cao
出处
期刊:Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
日期:2022-01-01
卷期号:: 697-708
标识
DOI:10.1007/978-3-030-93398-2_60
摘要
AbstractLarge peak-to-average power ratio (PAPR) hinders the development of the localized single carrier frequency division multiple access (SC-LFDMA). In this paper, autoencoder (AE) is introduced in SC-LFDMA to reduce PAPR, known as AE-SC-LFDMA. In AE-SC-LFDMA, the Encoder and Decoder of AE are used to encode and decode the modulated symbols of conventional SC-LFDMA based on deep neural network (DNN). This process aims to make AE-SC-LFDMA achieve lower PAPR as well as be more robust to the nonlinear distortion (NLD) of high power amplifier (HPA). Simulation results show that the proposed scheme outperforms conventional schemes both in bit error rate (BER) and PAPR.KeywordsSC-LFDMAAEDNNHPA
科研通智能强力驱动
Strongly Powered by AbleSci AI