Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助shatang采纳,获得10
1秒前
zxx5012发布了新的文献求助10
1秒前
芥丶子完成签到,获得积分10
2秒前
曾开心完成签到,获得积分10
2秒前
平淡南霜发布了新的文献求助10
2秒前
Blue_Pig发布了新的文献求助10
3秒前
李健的小迷弟应助逐风采纳,获得30
3秒前
yatou5651发布了新的文献求助10
4秒前
Akim应助和谐乌龟采纳,获得10
4秒前
peng完成签到,获得积分20
5秒前
CipherSage应助汉关采纳,获得10
5秒前
6秒前
6秒前
6秒前
丘比特应助XM采纳,获得10
6秒前
bkagyin应助Blue_Pig采纳,获得10
7秒前
8秒前
9秒前
9秒前
完美世界应助加油加油采纳,获得10
10秒前
10秒前
11秒前
ns发布了新的文献求助30
13秒前
11111发布了新的文献求助10
13秒前
14秒前
药学牛马完成签到,获得积分10
14秒前
张zi发布了新的文献求助10
15秒前
yatou5651发布了新的文献求助10
16秒前
16秒前
小魏不学无术完成签到,获得积分10
16秒前
木棉发布了新的文献求助10
16秒前
A1234发布了新的文献求助10
17秒前
英俊的铭应助弄井采纳,获得30
17秒前
小二郎应助Dean采纳,获得10
18秒前
故意的冰淇淋完成签到 ,获得积分10
18秒前
18秒前
远方完成签到,获得积分10
19秒前
kiminonawa完成签到,获得积分0
20秒前
zrz完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808