Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助风清扬采纳,获得10
刚刚
陶逸豪发布了新的文献求助10
1秒前
2秒前
luan完成签到,获得积分10
2秒前
小胜完成签到 ,获得积分10
3秒前
赘婿应助hoshi采纳,获得10
4秒前
科研通AI2S应助舒博博采纳,获得10
5秒前
Ava应助111采纳,获得10
5秒前
5秒前
Xangel发布了新的文献求助30
5秒前
zero_sky发布了新的文献求助10
5秒前
6秒前
上官若男应助体贴的采蓝采纳,获得10
6秒前
王十三发布了新的文献求助30
7秒前
7秒前
8秒前
ding应助结实的红酒采纳,获得10
9秒前
学术小透明完成签到,获得积分10
9秒前
潇洒代亦完成签到,获得积分10
9秒前
guandada完成签到,获得积分10
10秒前
领导范儿应助sdfer23采纳,获得10
10秒前
小小发布了新的文献求助10
11秒前
乐乐应助风清扬采纳,获得10
11秒前
寒冷凌瑶发布了新的文献求助10
11秒前
爆米花应助陶逸豪采纳,获得10
12秒前
ho应助xczhu采纳,获得10
13秒前
林深完成签到,获得积分10
14秒前
星辰大海应助weilao采纳,获得10
14秒前
傲娇芷容发布了新的文献求助10
14秒前
15秒前
王腾锐发布了新的文献求助10
16秒前
16秒前
16秒前
Wenyilong发布了新的文献求助10
17秒前
斯文败类应助Xangel采纳,获得10
18秒前
Cecilia_koala完成签到,获得积分10
18秒前
19秒前
王十三完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354986
求助须知:如何正确求助?哪些是违规求助? 4486944
关于积分的说明 13968439
捐赠科研通 4387716
什么是DOI,文献DOI怎么找? 2410452
邀请新用户注册赠送积分活动 1402979
关于科研通互助平台的介绍 1376705