Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo000发布了新的文献求助10
刚刚
和谐安露完成签到,获得积分10
1秒前
1秒前
chenanqi发布了新的文献求助10
2秒前
2秒前
zx发布了新的文献求助10
2秒前
2秒前
3秒前
默默访冬完成签到 ,获得积分10
4秒前
共享精神应助宝玉采纳,获得10
4秒前
5秒前
沙漠完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
酷波er应助Lynie采纳,获得10
7秒前
茶与香完成签到 ,获得积分10
7秒前
苗条冰菱发布了新的文献求助10
8秒前
8秒前
8秒前
冷酷的念柏完成签到,获得积分10
9秒前
9秒前
顺顺过过完成签到 ,获得积分20
9秒前
小小旭呀发布了新的文献求助10
9秒前
Humble发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
打打应助StevenZhao采纳,获得10
12秒前
12秒前
好耶发布了新的文献求助10
13秒前
CHER发布了新的文献求助10
14秒前
15秒前
丢丢银完成签到,获得积分10
16秒前
16秒前
Akim应助hyodong采纳,获得10
16秒前
18秒前
18秒前
王一一完成签到,获得积分20
18秒前
NexusExplorer应助俏皮寻菱采纳,获得10
18秒前
18秒前
高挑的静珊完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488