Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝塔的贝塔完成签到,获得积分10
刚刚
123123发布了新的文献求助10
1秒前
聪明雅绿发布了新的文献求助10
1秒前
XRQ完成签到,获得积分10
1秒前
XUXU发布了新的文献求助10
1秒前
2秒前
太兰完成签到 ,获得积分10
2秒前
碧蓝盼晴完成签到,获得积分20
2秒前
星野完成签到,获得积分10
2秒前
3秒前
时光完成签到,获得积分10
3秒前
3秒前
3秒前
MQL完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
luo发布了新的文献求助10
4秒前
少7一点8完成签到,获得积分10
5秒前
孤独巡礼完成签到,获得积分10
6秒前
科研通AI6应助好旺采纳,获得10
6秒前
TAT完成签到 ,获得积分10
6秒前
Isnaw完成签到,获得积分10
6秒前
碧蓝盼晴发布了新的文献求助10
6秒前
时光发布了新的文献求助10
6秒前
搜集达人应助温暖的煎饼采纳,获得10
6秒前
果奶绝甜完成签到,获得积分10
6秒前
JamesPei应助一路升桦采纳,获得10
7秒前
黎昕完成签到,获得积分10
7秒前
小汤发布了新的文献求助10
7秒前
wxz1998完成签到,获得积分10
7秒前
好吃的蛋挞完成签到,获得积分10
7秒前
浮游应助荔枝吖采纳,获得10
7秒前
pencil123完成签到,获得积分10
7秒前
zhuyanqi发布了新的文献求助20
8秒前
8秒前
犹豫的若男完成签到,获得积分10
8秒前
shenya0810应助坚强百褶裙采纳,获得10
8秒前
shenya0810应助鹅鹅鹅采纳,获得10
8秒前
ZXY发布了新的文献求助10
9秒前
化工兔完成签到,获得积分10
9秒前
lucky完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510567
求助须知:如何正确求助?哪些是违规求助? 4605250
关于积分的说明 14493621
捐赠科研通 4540414
什么是DOI,文献DOI怎么找? 2487980
邀请新用户注册赠送积分活动 1470238
关于科研通互助平台的介绍 1442645