Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yan发布了新的文献求助10
刚刚
1秒前
4秒前
kento发布了新的文献求助50
5秒前
5秒前
louis发布了新的文献求助10
5秒前
卿卿完成签到,获得积分10
5秒前
火星上友易完成签到,获得积分10
6秒前
maxSpr完成签到 ,获得积分10
7秒前
7秒前
不配.应助林歌ovo采纳,获得10
8秒前
9秒前
淼淼之锋完成签到 ,获得积分10
9秒前
格子布发布了新的文献求助10
10秒前
10秒前
HGD发布了新的文献求助50
10秒前
乘风发布了新的文献求助10
10秒前
13秒前
14秒前
饱满的海秋完成签到,获得积分10
14秒前
Lucas应助chao采纳,获得10
16秒前
哈好好哈哈好完成签到 ,获得积分10
16秒前
16秒前
Mengqi完成签到,获得积分10
17秒前
Jasper应助彩色半烟采纳,获得10
19秒前
多情自古空余恨完成签到,获得积分10
20秒前
王4发布了新的文献求助10
20秒前
20秒前
一叶知秋发布了新的文献求助30
21秒前
21秒前
林歌ovo完成签到 ,获得积分10
21秒前
22秒前
酷波er应助Falling采纳,获得10
22秒前
科目三应助简单奎采纳,获得10
22秒前
科研通AI2S应助辰星采纳,获得10
23秒前
24秒前
顺利小鸭子完成签到 ,获得积分10
24秒前
24秒前
老丫大侠完成签到 ,获得积分10
26秒前
王4完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141384
求助须知:如何正确求助?哪些是违规求助? 2792400
关于积分的说明 7802329
捐赠科研通 2448585
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237