Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network

壤土 吸附 土壤水分 土壤科学 化学 环境化学 环境科学 数学 物理化学 有机化学
作者
Qian Wang,Jianmin Bian,Dongmei Ruan,Chunpeng Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:306: 114467-114467 被引量:11
标识
DOI:10.1016/j.jenvman.2022.114467
摘要

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
FashionBoy应助沉默太清采纳,获得10
刚刚
追寻飞松完成签到,获得积分10
刚刚
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
一支蕉完成签到,获得积分10
1秒前
进击的PhD应助科研通管家采纳,获得20
1秒前
大头发布了新的文献求助10
1秒前
1秒前
好好发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得50
2秒前
2秒前
进击的PhD应助科研通管家采纳,获得20
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
祺yix发布了新的文献求助20
2秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zhuojiu应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
上官若男应助快乐的菠萝采纳,获得10
4秒前
科研通AI6应助1111采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648