亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building a Lightweight Digital Twin of a Crane Boom for Structural Safety Monitoring Based on a Multifidelity Surrogate Model

繁荣 计算机科学 结构工程 可靠性(半导体) 工程类 模拟 可靠性工程 量子力学 环境工程 物理 功率(物理)
作者
Xiaonan Lai,Xiwang He,Shuo Wang,Xiaobang Wang,Wei Sun,Xueguan Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:144 (6) 被引量:34
标识
DOI:10.1115/1.4053606
摘要

Abstract Undetected fatigue and overload damages at the key locations of the crane boom are among the biggest threats in construction, leading to structural failure. Thus, the structural health of the crane boom should be monitored in real time to ensure that it works under the designed load capacity. In this study, we developed a lightweight digital twin by the multifidelity surrogate (MFS) model to improve the real-time monitoring and prediction accuracy of the structural safety of a crane boom. Digital twin technology, which can establish real-time mapping between the physical space and the digital space, has a promising potential for online monitoring and analysis of structures, equipment, and even human bodies. By combining the MFS model and sensor data, the lightweight digital twin can dynamically mirror the crane boom postures and predict its structural performance in real time. In this study, the structural analysis of the crane boom is limited to the linear elastic stage of materials. Numerical experiments showed that the accuracy of the lightweight digital twin was enhanced compared with that established by the single-fidelity surrogate model, and the computational cost of the lightweight digital twin was decreased with respect to the digital twin built by the numerical method. Meanwhile, the uncertainty from the physical space was analyzed to enhance the reliability of the lightweight digital twin. Thus, the lightweight digital twin developed in our work can ensure accurate safety prediction and design optimization for crane booms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
59秒前
qing发布了新的文献求助10
1分钟前
1分钟前
clairevox完成签到,获得积分10
1分钟前
clairevox发布了新的文献求助10
1分钟前
1分钟前
你当像鸟飞往你的山完成签到 ,获得积分10
2分钟前
qing发布了新的文献求助10
2分钟前
2分钟前
qing发布了新的文献求助10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
852应助ling361采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
xhsz1111完成签到 ,获得积分10
3分钟前
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
4分钟前
无情的宛菡完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
VDC完成签到,获得积分0
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
曙光完成签到,获得积分10
7分钟前
震动的听枫完成签到,获得积分10
7分钟前
无花果应助科研通管家采纳,获得10
8分钟前
8分钟前
ling361发布了新的文献求助10
8分钟前
9分钟前
9分钟前
花生油炒花生米完成签到,获得积分10
9分钟前
drhwang完成签到,获得积分10
10分钟前
ding应助科研通管家采纳,获得10
10分钟前
10分钟前
Yuan应助科研通管家采纳,获得10
10分钟前
Yuan应助科研通管家采纳,获得10
10分钟前
Yuan应助科研通管家采纳,获得10
10分钟前
Yuan应助科研通管家采纳,获得10
10分钟前
Yuan应助科研通管家采纳,获得10
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277618
关于积分的说明 10003453
捐赠科研通 2993632
什么是DOI,文献DOI怎么找? 1642785
邀请新用户注册赠送积分活动 780641
科研通“疑难数据库(出版商)”最低求助积分说明 748912