Enhanced Watershed Segmentation Algorithm-Based Modified ResNet50 Model for Brain Tumor Detection

计算机科学 人工智能 分类器(UML) 深度学习 分割 机器学习 分水岭 特征提取 卷积神经网络 脑瘤 特征(语言学) 算法 模式识别(心理学) 病理 医学 哲学 语言学
作者
Arpit Kumar Sharma,Amita Nandal,Arvind Dhaka,Deepika Koundal,Dijana Capeska Bogatinoska,Hashem Alyami
出处
期刊:BioMed Research International [Hindawi Limited]
卷期号:2022: 1-14 被引量:53
标识
DOI:10.1155/2022/7348344
摘要

This work delivers a novel technique to detect brain tumor with the help of enhanced watershed modeling integrated with a modified ResNet50 architecture. It also involves stochastic approaches to help in developing enhanced watershed modeling. Cancer diseases, primarily the brain tumor, have been exponentially raised which has alarmed researchers from academia and industry. Nowadays, researchers need to attain a more effective, accurate, and trustworthy brain tumor tissue detection and classification approach. Different from traditional machine learning methods that are just targeting to enhance classification efficiency, this work highlights the process to extract several deep features to diagnose brain tumor effectively. This paper explains the modeling of a novel technique by integrating the modified ResNet50 with the Enhanced Watershed Segmentation (EWS) algorithm for brain tumor classification and deep feature extraction. The proposed model uses the ResNet50 model with a modified layer architecture including five convolutional layers and three fully connected layers. The proposed method can retain the optimal computational efficiency with high-dimensional deep features. This work obtains a comprised feature set by retrieving the diverse deep features from the ResNet50 deep learning model and feeds them as input to the classifier. The good performing capability of the proposed model is achieved by using hybrid features of ResNet50. The brain tumor tissue images were extracted by the suggested hybrid deep feature-based modified ResNet50 model and the EWS-based modified ResNet50 model with a high classification accuracy of 92% and 90%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Monicadd关注了科研通微信公众号
刚刚
果蝇之母完成签到 ,获得积分10
1秒前
传奇3应助eric采纳,获得10
1秒前
豆子发布了新的文献求助10
1秒前
2秒前
热带猫完成签到,获得积分10
2秒前
shelemi发布了新的文献求助10
2秒前
pb发布了新的文献求助10
3秒前
dkz完成签到,获得积分10
3秒前
明亮的代真完成签到,获得积分10
3秒前
3秒前
嘟嘟豆806完成签到,获得积分10
3秒前
austzhoujw发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
欧阳完成签到,获得积分10
4秒前
上进生发布了新的文献求助10
5秒前
5秒前
结实曼荷关注了科研通微信公众号
5秒前
5秒前
逗逗完成签到,获得积分10
6秒前
LuLan0401完成签到,获得积分10
6秒前
Owen应助呆萌鱼采纳,获得10
8秒前
鸟头完成签到 ,获得积分20
8秒前
8秒前
kai发布了新的文献求助10
9秒前
wjf123完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
多情捕发布了新的文献求助10
11秒前
orixero应助上进生采纳,获得10
12秒前
JamesPei应助鼠鼠想养猫采纳,获得10
12秒前
一一发布了新的文献求助10
12秒前
LMH完成签到,获得积分10
13秒前
言言发布了新的文献求助10
13秒前
qingfeng完成签到,获得积分20
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905