MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物信息学 量子力学 政治学 法学 生物
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
daytoy完成签到,获得积分10
1秒前
1秒前
胡瓜拌凉皮完成签到,获得积分10
2秒前
李想完成签到,获得积分10
3秒前
4秒前
1111发布了新的文献求助30
4秒前
缥缈冷亦发布了新的文献求助100
4秒前
4秒前
你好发布了新的文献求助10
5秒前
领导范儿应助Cole采纳,获得10
5秒前
周老八发布了新的文献求助10
5秒前
勤劳山柏完成签到,获得积分20
6秒前
7秒前
Lucas应助daytoy采纳,获得10
7秒前
7秒前
7秒前
7秒前
沐言完成签到,获得积分10
8秒前
8秒前
Qing完成签到,获得积分10
9秒前
勤劳山柏发布了新的文献求助10
10秒前
灵寒完成签到 ,获得积分10
10秒前
11秒前
科研通AI6应助科研式采纳,获得10
11秒前
彭于晏应助木子采纳,获得10
11秒前
科研通AI5应助Yuanyuan采纳,获得10
11秒前
量子星尘发布了新的文献求助50
12秒前
12秒前
爆米花应助NiL采纳,获得10
13秒前
shirely完成签到,获得积分10
14秒前
柑橘小桃酥完成签到,获得积分10
14秒前
14秒前
Killor发布了新的文献求助10
14秒前
wp完成签到,获得积分10
14秒前
14秒前
缥缈冷亦完成签到,获得积分10
14秒前
小学猹完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310