MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物信息学 量子力学 政治学 法学 生物
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
大模型应助FlipFlops采纳,获得10
刚刚
坚强的元珊应助猪猪hero采纳,获得20
刚刚
luanzhaohui发布了新的文献求助50
1秒前
jia完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
向北发布了新的文献求助20
1秒前
kimchiyak给咯咯咯的求助进行了留言
2秒前
3秒前
3秒前
外向的初曼完成签到,获得积分10
3秒前
NexusExplorer应助wuran采纳,获得10
3秒前
复杂的梦易完成签到,获得积分10
5秒前
FashionBoy应助zhou采纳,获得10
5秒前
柳博超完成签到,获得积分10
6秒前
KHromance发布了新的文献求助10
7秒前
duoduo发布了新的文献求助20
7秒前
unicorn完成签到,获得积分10
7秒前
LLM完成签到,获得积分10
8秒前
ss发布了新的文献求助10
8秒前
跳跃完成签到,获得积分10
8秒前
jksg发布了新的文献求助10
9秒前
打打应助熙可檬采纳,获得10
10秒前
10秒前
传奇3应助pure采纳,获得10
11秒前
彩色的曼柔完成签到 ,获得积分10
11秒前
enen发布了新的文献求助10
11秒前
魔幻的翠容完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
坦率的香烟完成签到,获得积分10
13秒前
13秒前
funkii完成签到,获得积分10
14秒前
领导范儿应助向北采纳,获得10
14秒前
jiaxingwei发布了新的文献求助10
14秒前
LHL完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320