MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物信息学 量子力学 政治学 法学 生物
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baobao完成签到,获得积分10
刚刚
www发布了新的文献求助50
刚刚
刚刚
南汉高贵的陈皮完成签到 ,获得积分10
刚刚
mmm完成签到 ,获得积分10
刚刚
菠萝吹宝关注了科研通微信公众号
刚刚
希望天下0贩的0应助妮子采纳,获得10
1秒前
1秒前
1秒前
海珠完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助阳光映秋采纳,获得10
2秒前
happyboy2008完成签到,获得积分10
3秒前
4秒前
科研通AI6应助666采纳,获得10
5秒前
malistm发布了新的文献求助10
5秒前
Dean应助Shaw采纳,获得50
5秒前
小手一背怒发文章震惊上下三届完成签到,获得积分10
5秒前
5秒前
secret发布了新的文献求助10
6秒前
cetomacrogol完成签到,获得积分10
6秒前
7秒前
Hoshi发布了新的文献求助10
7秒前
尺素寸心发布了新的文献求助10
7秒前
爱吃泡芙完成签到,获得积分10
7秒前
自由妄想完成签到,获得积分10
7秒前
夏天的风完成签到,获得积分10
7秒前
沸沸关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
7秒前
苹果板栗完成签到,获得积分10
8秒前
9秒前
lxt完成签到,获得积分20
9秒前
rainlwang发布了新的文献求助10
9秒前
科研通AI2S应助tomato采纳,获得10
9秒前
Storm完成签到,获得积分10
10秒前
Lkydwzr发布了新的文献求助10
10秒前
小致发布了新的文献求助10
11秒前
黄臻发布了新的文献求助10
11秒前
尺素寸心完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062