MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物信息学 量子力学 政治学 法学 生物
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
野性的易真完成签到,获得积分10
1秒前
zhoujingya发布了新的文献求助10
2秒前
2秒前
阿新发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
引子完成签到,获得积分10
4秒前
舒心幻灵发布了新的文献求助10
5秒前
哈哈完成签到 ,获得积分20
6秒前
7秒前
星辰大海应助马铃薯采纳,获得10
7秒前
8秒前
sweet完成签到,获得积分10
8秒前
摸鱼科夫斯基完成签到,获得积分10
8秒前
9秒前
寒天抒完成签到,获得积分10
9秒前
bkagyin应助1134采纳,获得10
10秒前
刘钊扬发布了新的文献求助10
10秒前
拼搏的访天完成签到,获得积分10
10秒前
无花果应助笑笑采纳,获得30
10秒前
11秒前
王多鱼完成签到,获得积分10
11秒前
脑洞疼应助lf采纳,获得10
11秒前
tian完成签到,获得积分10
12秒前
12秒前
俭朴士晋发布了新的文献求助10
13秒前
田様应助北北贝贝采纳,获得10
14秒前
说几句完成签到,获得积分10
14秒前
背后寒烟发布了新的文献求助10
15秒前
桂花乌龙完成签到,获得积分10
15秒前
甘特发布了新的文献求助10
15秒前
王多鱼发布了新的文献求助10
17秒前
充电宝应助安平采纳,获得10
17秒前
科研通AI6应助月月采纳,获得10
18秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
浮游应助董宇峰采纳,获得10
22秒前
HMM完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889