MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物 量子力学 法学 生物信息学 政治学
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谜语完成签到 ,获得积分10
刚刚
1秒前
2秒前
科学家发布了新的文献求助10
2秒前
2秒前
HEHNJJ完成签到,获得积分10
2秒前
Q1n完成签到,获得积分10
2秒前
苏su发布了新的文献求助10
3秒前
月月呀发布了新的文献求助10
3秒前
4秒前
研友_ZAe4qZ发布了新的文献求助10
4秒前
lalala发布了新的文献求助10
5秒前
典雅夏之发布了新的文献求助30
5秒前
冷酷蛋挞发布了新的文献求助10
5秒前
狮子座发布了新的文献求助10
7秒前
打工人完成签到,获得积分10
8秒前
小云发布了新的文献求助30
8秒前
小团子完成签到,获得积分10
8秒前
想毕业的第n天完成签到,获得积分10
9秒前
lalala应助科研小虫采纳,获得10
9秒前
一杯双皮奶完成签到,获得积分10
9秒前
我就是我完成签到,获得积分10
9秒前
9秒前
cs完成签到 ,获得积分10
10秒前
小李博士发布了新的文献求助10
11秒前
stkp完成签到,获得积分10
11秒前
魔幻的莺关注了科研通微信公众号
12秒前
wanci应助Zpk采纳,获得10
12秒前
月月呀完成签到,获得积分10
13秒前
研友_ZAe4qZ完成签到,获得积分20
13秒前
小云完成签到,获得积分10
14秒前
Joy发布了新的文献求助10
14秒前
好耶发布了新的文献求助10
15秒前
16秒前
乐正三问完成签到,获得积分10
17秒前
18秒前
在木星完成签到,获得积分10
18秒前
乐乐应助xz采纳,获得10
18秒前
爆米花应助研友_ZAe4qZ采纳,获得10
19秒前
赘婿应助wtbxsjy采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236