亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MNERLP-MUL: Merged node and edge relevance based link prediction in multiplex networks

链接(几何体) 相关性(法律) 节点(物理) 计算机科学 GSM演进的增强数据速率 图形 数据挖掘 多路复用 理论计算机科学 人工智能 计算机网络 物理 生物信息学 量子力学 政治学 法学 生物
作者
Shivansh Mishra,Shashank Sheshar Singh,Ajay Kumar,Bhaskar Biswas
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:60: 101606-101606 被引量:15
标识
DOI:10.1016/j.jocs.2022.101606
摘要

In multiplex networks, nodes can have multiple types of relationships (links) encoded into different layers such that each layer represents a single type of link. Even though the nature of links in different layers may differ, the nodes themselves remain the same, and so do their underlying relations among themselves. Combining the information in all the layers into one single network such that link prediction can be performed using all the available information is an ongoing research problem. In this work, we theorize that to accurately perform this link prediction, we have to take into account the relevance of both the edges as well as the nodes that connect two directly unconnected nodes. First, we utilize an aggregation model that encodes the information from different layers into one summarized weighted static network, taking into account the relative density of the layers themselves. Then, we propose an algorithm, MNERLP−MUL, which first calculates node and edge relevance based on the summarized graph, and then we combine both these factors to perform link prediction on unconnected pairs of nodes. The edge relevance is calculated using the information from the immediate vicinity of the edge (local information), while node relevance is calculated based on the node’s importance to the overall structure of the graph (global information). We use this methodology to model our method on quasi-local link prediction approaches, which attempt to inculcate properties of both local and global properties for increased accuracy. We compare our method with classical link prediction methods for weighted graphs, and the results indicate its superior performance, both on the summarized weighted graph and original layers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳佳发布了新的文献求助10
1秒前
果果完成签到,获得积分20
2秒前
共享精神应助孔踏歌采纳,获得10
3秒前
4秒前
7秒前
Cmqq发布了新的文献求助10
7秒前
吃瓜群众完成签到,获得积分10
7秒前
zhouxunnjau发布了新的文献求助10
13秒前
小江发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助20
21秒前
完美世界应助小江采纳,获得10
30秒前
求学完成签到,获得积分10
31秒前
在水一方应助求学采纳,获得10
42秒前
loser完成签到 ,获得积分10
49秒前
大模型应助Cmqq采纳,获得10
49秒前
清浅完成签到 ,获得积分10
52秒前
zeice完成签到 ,获得积分10
55秒前
阔达白凡完成签到,获得积分10
1分钟前
1分钟前
美丽的冰枫完成签到,获得积分10
1分钟前
佳佳完成签到,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
义气的断秋完成签到,获得积分10
1分钟前
TwentyNine关注了科研通微信公众号
1分钟前
安详的从筠完成签到,获得积分10
1分钟前
田様应助Cmqq采纳,获得10
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
1分钟前
重庆森林发布了新的文献求助10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
重庆森林完成签到,获得积分10
2分钟前
小榕树完成签到,获得积分10
2分钟前
2分钟前
shuang完成签到 ,获得积分10
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
孔踏歌发布了新的文献求助10
2分钟前
所所应助Cmqq采纳,获得10
2分钟前
TwentyNine发布了新的文献求助20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904