Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO<sub>4</sub>/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation

材料科学 异质结 石墨烯 氧化物 分解水 光催化 人工光合作用 肖特基势垒 空位缺陷 光化学 纳米技术 化学工程
作者
Siyuan Liu,Jian Pan,Weiyu Kong,Xin Li,Jianyu Zhang,Xiaoxiao Zhang,Runlu Liu,Yao Li,Yixin Zhao,Dawei Wang,Jianqin Zhang,Shenmin Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.1c22250
摘要

Water oxidation process is a pivotal step of photosynthesis and stimulates the progress of high-performance catalysts for renewable fuel production. Despite the performance benefit of cocatalysts, defect engineering holds promise to settle inherent limitations of semiconductors aiming at sluggish water oxidation. Here, we modify the in situ growth pathway of monoclinic BiVO4 (m-BiVO4) on reduced graphene oxide (rGO), constructing abundant surface oxygen vacancies (OV)-incorporated m-BiVO4/rGO heterostructure toward water oxidation reaction under visible light. Owing to the OV in the m-BiVO4 component, a vacancy-related defect level allows more electrons to be photoexcited by low-energy photons to cause the electron transition, boosting photoabsorption as well as photoexcitation. Besides, the OV can reinforce surface adsorption and reduce the dissociation energy of water molecules. Particularly because of the synergy of OV and cocatalyst rGO, the OV functions as electron-trapped sites to facilitate the carrier separation; the rGO not only receives electrons from m-BiVO4 promoted by internal electric field over Mott-Schottky heterostructures but also spurs further electron diffusion along a highly conductive carbon network. These merits enable the OV-incorporated m-BiVO4/rGO heterostructure with an over 209% growth in O2 yield relative to the counterpart. The increased performance is also validated by the significant rise of •OH radicals and •O2- radicals. The current work paves a novel avenue for the integration of defect engineering and cocatalyst coupling in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk完成签到,获得积分10
1秒前
hzr完成签到,获得积分10
1秒前
布响丸辣发布了新的文献求助30
1秒前
俭朴的寇应助来日方长采纳,获得10
1秒前
Free完成签到,获得积分10
1秒前
懵懂的采梦完成签到,获得积分10
2秒前
uil完成签到,获得积分10
2秒前
英姑应助蕉叶采纳,获得10
2秒前
果果完成签到,获得积分10
2秒前
halo完成签到,获得积分10
2秒前
2秒前
LydiaZhang发布了新的文献求助10
2秒前
里已经完成签到,获得积分10
2秒前
深海鳕鱼完成签到,获得积分10
3秒前
3秒前
文卿发布了新的文献求助10
3秒前
微微发布了新的文献求助10
3秒前
4秒前
hahhhah完成签到 ,获得积分10
4秒前
Xltox完成签到,获得积分10
4秒前
健忘的铃铛完成签到,获得积分10
5秒前
白英完成签到,获得积分10
5秒前
麦兜完成签到,获得积分10
5秒前
gggg应助木子采纳,获得10
5秒前
充电宝应助木子采纳,获得10
5秒前
XCL应助hzr采纳,获得10
5秒前
2hi完成签到,获得积分10
6秒前
明理的小蜜蜂完成签到,获得积分10
6秒前
kk完成签到,获得积分10
6秒前
冷傲半烟完成签到,获得积分10
6秒前
科研通AI5应助kirito采纳,获得10
6秒前
大曼曼曼曼完成签到,获得积分10
7秒前
明月曾经川岸去完成签到,获得积分10
7秒前
你可以的完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
林苏完成签到,获得积分10
7秒前
菜叶发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077