已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO<sub>4</sub>/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation

材料科学 异质结 石墨烯 氧化物 分解水 光催化 人工光合作用 肖特基势垒 空位缺陷 光化学 纳米技术 化学工程
作者
Siyuan Liu,Jian Pan,Weiyu Kong,Xin Li,Jianyu Zhang,Xiaoxiao Zhang,Runlu Liu,Yao Li,Yixin Zhao,Dawei Wang,Jianqin Zhang,Shenmin Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.1c22250
摘要

Water oxidation process is a pivotal step of photosynthesis and stimulates the progress of high-performance catalysts for renewable fuel production. Despite the performance benefit of cocatalysts, defect engineering holds promise to settle inherent limitations of semiconductors aiming at sluggish water oxidation. Here, we modify the in situ growth pathway of monoclinic BiVO4 (m-BiVO4) on reduced graphene oxide (rGO), constructing abundant surface oxygen vacancies (OV)-incorporated m-BiVO4/rGO heterostructure toward water oxidation reaction under visible light. Owing to the OV in the m-BiVO4 component, a vacancy-related defect level allows more electrons to be photoexcited by low-energy photons to cause the electron transition, boosting photoabsorption as well as photoexcitation. Besides, the OV can reinforce surface adsorption and reduce the dissociation energy of water molecules. Particularly because of the synergy of OV and cocatalyst rGO, the OV functions as electron-trapped sites to facilitate the carrier separation; the rGO not only receives electrons from m-BiVO4 promoted by internal electric field over Mott-Schottky heterostructures but also spurs further electron diffusion along a highly conductive carbon network. These merits enable the OV-incorporated m-BiVO4/rGO heterostructure with an over 209% growth in O2 yield relative to the counterpart. The increased performance is also validated by the significant rise of •OH radicals and •O2- radicals. The current work paves a novel avenue for the integration of defect engineering and cocatalyst coupling in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯语雪完成签到 ,获得积分10
1秒前
cc应助诚心山芙采纳,获得10
3秒前
4秒前
NexusExplorer应助pin采纳,获得10
4秒前
儒雅的十八完成签到,获得积分10
4秒前
dogontree发布了新的文献求助10
6秒前
10秒前
pass完成签到 ,获得积分10
11秒前
12秒前
Skywalker发布了新的文献求助10
15秒前
16秒前
sxwzssyj完成签到,获得积分10
16秒前
SiboN完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
老金金发布了新的文献求助10
23秒前
mdjinij发布了新的文献求助10
23秒前
26秒前
汝桢发布了新的文献求助10
31秒前
隐形曼青应助肯瑞恩哭哭采纳,获得10
34秒前
所所应助科研通管家采纳,获得30
35秒前
华仔应助科研通管家采纳,获得10
35秒前
乐乐应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
35秒前
花呗发布了新的文献求助10
36秒前
老金金完成签到,获得积分10
37秒前
43秒前
Yilam完成签到,获得积分10
43秒前
46秒前
Akim应助dogontree采纳,获得10
48秒前
隐形曼青应助甜蜜发带采纳,获得10
48秒前
科研小白完成签到,获得积分10
48秒前
咸鸭蛋完成签到 ,获得积分10
53秒前
外向又菱发布了新的文献求助10
53秒前
55秒前
cr完成签到 ,获得积分10
56秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253316
求助须知:如何正确求助?哪些是违规求助? 4416731
关于积分的说明 13750447
捐赠科研通 4289094
什么是DOI,文献DOI怎么找? 2353235
邀请新用户注册赠送积分活动 1349978
关于科研通互助平台的介绍 1309772