Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO<sub>4</sub>/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation

材料科学 异质结 石墨烯 氧化物 分解水 光催化 人工光合作用 肖特基势垒 空位缺陷 光化学 纳米技术 化学工程
作者
Siyuan Liu,Jian Pan,Weiyu Kong,Xin Li,Jianyu Zhang,Xiaoxiao Zhang,Runlu Liu,Yao Li,Yixin Zhao,Dawei Wang,Jianqin Zhang,Shenmin Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.1c22250
摘要

Water oxidation process is a pivotal step of photosynthesis and stimulates the progress of high-performance catalysts for renewable fuel production. Despite the performance benefit of cocatalysts, defect engineering holds promise to settle inherent limitations of semiconductors aiming at sluggish water oxidation. Here, we modify the in situ growth pathway of monoclinic BiVO4 (m-BiVO4) on reduced graphene oxide (rGO), constructing abundant surface oxygen vacancies (OV)-incorporated m-BiVO4/rGO heterostructure toward water oxidation reaction under visible light. Owing to the OV in the m-BiVO4 component, a vacancy-related defect level allows more electrons to be photoexcited by low-energy photons to cause the electron transition, boosting photoabsorption as well as photoexcitation. Besides, the OV can reinforce surface adsorption and reduce the dissociation energy of water molecules. Particularly because of the synergy of OV and cocatalyst rGO, the OV functions as electron-trapped sites to facilitate the carrier separation; the rGO not only receives electrons from m-BiVO4 promoted by internal electric field over Mott-Schottky heterostructures but also spurs further electron diffusion along a highly conductive carbon network. These merits enable the OV-incorporated m-BiVO4/rGO heterostructure with an over 209% growth in O2 yield relative to the counterpart. The increased performance is also validated by the significant rise of •OH radicals and •O2- radicals. The current work paves a novel avenue for the integration of defect engineering and cocatalyst coupling in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bear完成签到,获得积分20
1秒前
1秒前
1秒前
脑洞疼应助kento采纳,获得10
2秒前
天天快乐应助若离采纳,获得10
3秒前
4秒前
5秒前
5秒前
ucas大菠萝发布了新的文献求助10
5秒前
Ava应助呆萌剑通采纳,获得10
6秒前
嘿嘿应助淡淡翠曼采纳,获得10
7秒前
7秒前
dabao发布了新的文献求助10
8秒前
傲娇以寒完成签到 ,获得积分10
9秒前
9秒前
9秒前
LL完成签到,获得积分10
10秒前
开心的涵柳完成签到,获得积分10
10秒前
11秒前
小楠楠发布了新的文献求助10
11秒前
12秒前
好好发布了新的文献求助12
12秒前
12秒前
事上炼应助冰淇淋啦啦啦采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
852应助摸鱼宝采纳,获得10
13秒前
14秒前
丘比特应助刘子田采纳,获得10
14秒前
情怀应助刘子田采纳,获得10
14秒前
李新悦发布了新的文献求助10
15秒前
16秒前
若离发布了新的文献求助10
18秒前
18秒前
淡淡一凤发布了新的文献求助10
18秒前
科研通AI6应助dabao采纳,获得10
19秒前
不是阿花发布了新的文献求助10
19秒前
szy关注了科研通微信公众号
19秒前
大个应助日天化石采纳,获得10
19秒前
梦梦完成签到,获得积分10
20秒前
引子完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594