Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO<sub>4</sub>/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation

材料科学 异质结 石墨烯 氧化物 分解水 光催化 人工光合作用 肖特基势垒 空位缺陷 光化学 纳米技术 化学工程
作者
Siyuan Liu,Jian Pan,Weiyu Kong,Xin Li,Jianyu Zhang,Xiaoxiao Zhang,Runlu Liu,Yao Li,Yixin Zhao,Dawei Wang,Jianqin Zhang,Shenmin Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.1c22250
摘要

Water oxidation process is a pivotal step of photosynthesis and stimulates the progress of high-performance catalysts for renewable fuel production. Despite the performance benefit of cocatalysts, defect engineering holds promise to settle inherent limitations of semiconductors aiming at sluggish water oxidation. Here, we modify the in situ growth pathway of monoclinic BiVO4 (m-BiVO4) on reduced graphene oxide (rGO), constructing abundant surface oxygen vacancies (OV)-incorporated m-BiVO4/rGO heterostructure toward water oxidation reaction under visible light. Owing to the OV in the m-BiVO4 component, a vacancy-related defect level allows more electrons to be photoexcited by low-energy photons to cause the electron transition, boosting photoabsorption as well as photoexcitation. Besides, the OV can reinforce surface adsorption and reduce the dissociation energy of water molecules. Particularly because of the synergy of OV and cocatalyst rGO, the OV functions as electron-trapped sites to facilitate the carrier separation; the rGO not only receives electrons from m-BiVO4 promoted by internal electric field over Mott-Schottky heterostructures but also spurs further electron diffusion along a highly conductive carbon network. These merits enable the OV-incorporated m-BiVO4/rGO heterostructure with an over 209% growth in O2 yield relative to the counterpart. The increased performance is also validated by the significant rise of •OH radicals and •O2- radicals. The current work paves a novel avenue for the integration of defect engineering and cocatalyst coupling in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏鱼完成签到 ,获得积分10
1秒前
啾啾发布了新的文献求助10
2秒前
2秒前
小虎完成签到,获得积分10
7秒前
7秒前
田様应助123采纳,获得10
9秒前
海带完成签到 ,获得积分10
9秒前
李爱国应助林克采纳,获得10
10秒前
温暖果汁发布了新的文献求助10
10秒前
11秒前
这几个字真的有十个字完成签到,获得积分10
11秒前
11秒前
啾啾完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
16秒前
乐乐应助呱呱采纳,获得10
16秒前
17秒前
22发布了新的文献求助10
18秒前
田様应助ste11ar采纳,获得20
19秒前
科目三应助林克采纳,获得10
19秒前
20秒前
尾巴发布了新的文献求助10
21秒前
天天快乐应助温暖果汁采纳,获得10
22秒前
Ava应助wjw采纳,获得10
23秒前
24秒前
25秒前
moomomomomo完成签到,获得积分10
26秒前
zimu012完成签到,获得积分10
27秒前
Leo完成签到 ,获得积分10
29秒前
30秒前
31秒前
超级的绿凝完成签到 ,获得积分10
31秒前
CipherSage应助重要的道之采纳,获得20
32秒前
123发布了新的文献求助10
32秒前
李什么完成签到,获得积分10
32秒前
33秒前
36秒前
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905