Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO<sub>4</sub>/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation

材料科学 异质结 石墨烯 氧化物 分解水 光催化 人工光合作用 肖特基势垒 空位缺陷 光化学 纳米技术 化学工程
作者
Siyuan Liu,Jian Pan,Weiyu Kong,Xin Li,Jianyu Zhang,Xiaoxiao Zhang,Runlu Liu,Yao Li,Yixin Zhao,Dawei Wang,Jianqin Zhang,Shenmin Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.1c22250
摘要

Water oxidation process is a pivotal step of photosynthesis and stimulates the progress of high-performance catalysts for renewable fuel production. Despite the performance benefit of cocatalysts, defect engineering holds promise to settle inherent limitations of semiconductors aiming at sluggish water oxidation. Here, we modify the in situ growth pathway of monoclinic BiVO4 (m-BiVO4) on reduced graphene oxide (rGO), constructing abundant surface oxygen vacancies (OV)-incorporated m-BiVO4/rGO heterostructure toward water oxidation reaction under visible light. Owing to the OV in the m-BiVO4 component, a vacancy-related defect level allows more electrons to be photoexcited by low-energy photons to cause the electron transition, boosting photoabsorption as well as photoexcitation. Besides, the OV can reinforce surface adsorption and reduce the dissociation energy of water molecules. Particularly because of the synergy of OV and cocatalyst rGO, the OV functions as electron-trapped sites to facilitate the carrier separation; the rGO not only receives electrons from m-BiVO4 promoted by internal electric field over Mott-Schottky heterostructures but also spurs further electron diffusion along a highly conductive carbon network. These merits enable the OV-incorporated m-BiVO4/rGO heterostructure with an over 209% growth in O2 yield relative to the counterpart. The increased performance is also validated by the significant rise of •OH radicals and •O2- radicals. The current work paves a novel avenue for the integration of defect engineering and cocatalyst coupling in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
campus发布了新的文献求助10
1秒前
乐观海燕完成签到 ,获得积分10
1秒前
走走停停关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
snowdream完成签到,获得积分10
3秒前
Ds应助winky采纳,获得10
3秒前
4秒前
埃特纳氏完成签到 ,获得积分10
6秒前
6秒前
逆时针发布了新的文献求助10
9秒前
图苏完成签到,获得积分10
9秒前
科研通AI6应助frank采纳,获得10
10秒前
zheng完成签到,获得积分10
10秒前
11秒前
科研通AI5应助刚国忠采纳,获得10
11秒前
11秒前
12秒前
12秒前
ZXQ111发布了新的文献求助10
13秒前
15秒前
爆米花应助静1997采纳,获得10
15秒前
歪梨小菲完成签到,获得积分10
15秒前
甘楽发布了新的文献求助10
15秒前
科研通AI6应助等待的远山采纳,获得10
18秒前
逆时针完成签到,获得积分20
18秒前
wanglu发布了新的文献求助10
20秒前
CHEN关注了科研通微信公众号
20秒前
彭于晏应助iu采纳,获得10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
25秒前
26秒前
哇咔咔完成签到 ,获得积分10
28秒前
28秒前
小胡发布了新的文献求助10
29秒前
Nostalgia发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087552
求助须知:如何正确求助?哪些是违规求助? 4302919
关于积分的说明 13409250
捐赠科研通 4128345
什么是DOI,文献DOI怎么找? 2260846
邀请新用户注册赠送积分活动 1264965
关于科研通互助平台的介绍 1199312