Viewpoint Alignment and Discriminative Parts Enhancement in 3D Space for Vehicle ReID

判别式 人工智能 计算机科学 杠杆(统计) 计算机视觉 光学(聚焦) 稳健性(进化) 模式识别(心理学) 联营 特征(语言学) 哲学 物理 光学 基因 化学 生物化学 语言学
作者
Dechao Meng,Liang Li,Xuejing Liu,Lin Gao,Qingming Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2954-2965 被引量:4
标识
DOI:10.1109/tmm.2022.3154102
摘要

Vehicle Re-Identification is to find the same vehicle from images captured in different views under cross-camera scenarios. Traditional methods focus on depicting the holistic appearance of a vehicle, but they suffer from the hard samples with the same vehicle type and color. Recent works leverage the discriminative visual cues to solve this problem, where three challenges exist as follows. First, vehicle features are misaligned and distorted because of the viewpoint variance. Second, the discriminative visual cues are usually subtle, which is easy to be diluted by the large area of non-discriminative regions in subsequent average pooling modules. Third, these discriminative visual cues are dynamic for the same image when it compares with different vehicle images. To tackle the above problems, we project the vehicle images from 2D to 3D space and rotate them to the same view, and leverage the viewpoint aligned features to enhance the discriminative parts for vehicle ReID. In detail, our method consists of three sub-modules, 1) The 3D viewpoint alignment module restores the 3D information of the vehicle from a single vehicle image, and then rotates and re-renders it under fixed viewpoints. It enables fine-grained viewpoint alignment and relieves the distortion of the vehicle caused by the viewpoint variation. 2) The discriminative parts enhancement module performs feature enhancement guided by the prior distribution of distinctive parts. 3) The adaptive duplicated parts suppression module guides the network to focus on the most discriminative parts, which not only prevents the dilution of the high responses but also provides explainable evidence. The experimental results reveal our method achieves new state-of-the-art on large scale vehicle ReID dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spring完成签到 ,获得积分10
1秒前
欢喜的元霜完成签到,获得积分10
2秒前
伤心猪大肠完成签到,获得积分10
3秒前
hrzmlily完成签到,获得积分10
4秒前
animages完成签到,获得积分10
6秒前
称心的语梦完成签到,获得积分10
6秒前
feixue完成签到,获得积分10
6秒前
勤奋完成签到,获得积分0
7秒前
ding应助liu采纳,获得10
7秒前
不能吃太饱完成签到 ,获得积分10
7秒前
Owen应助张清采纳,获得10
8秒前
Ray完成签到,获得积分10
9秒前
个性的大地完成签到,获得积分10
10秒前
闪闪星星完成签到,获得积分10
11秒前
hbpu230701完成签到,获得积分10
11秒前
tong完成签到,获得积分10
12秒前
12345完成签到,获得积分10
12秒前
梅槿完成签到 ,获得积分10
12秒前
14秒前
文献通完成签到 ,获得积分10
16秒前
已知中的未知完成签到 ,获得积分10
16秒前
nnnd77完成签到,获得积分10
17秒前
cdercder发布了新的文献求助10
18秒前
PhD_Lee73完成签到 ,获得积分10
19秒前
大大怪完成签到 ,获得积分10
19秒前
鱼0306完成签到,获得积分10
21秒前
wisdom完成签到,获得积分10
21秒前
劲秉应助科研通管家采纳,获得20
22秒前
wanci应助科研通管家采纳,获得10
22秒前
23秒前
材料与化工完成签到 ,获得积分10
24秒前
开朗醉波完成签到,获得积分10
25秒前
25秒前
Tina酱完成签到,获得积分10
25秒前
张清发布了新的文献求助10
27秒前
资格丘二完成签到 ,获得积分10
27秒前
美好谷南完成签到,获得积分10
29秒前
Raine完成签到,获得积分10
30秒前
知足肠乐完成签到,获得积分10
30秒前
hongw_liu完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539189
求助须知:如何正确求助?哪些是违规求助? 3116798
关于积分的说明 9326880
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547051
邀请新用户注册赠送积分活动 720745
科研通“疑难数据库(出版商)”最低求助积分说明 712219