Cellulose biosynthesis and function in bacteria.

生物化学 细菌纤维素 纤维素 操纵子 细菌 ATP合酶 细胞外 生物发生 生物 生物合成 基因簇 化学 基因 大肠杆菌 遗传学
作者
P Ross,Raphael Mayer,Moshe Benziman
出处
期刊:Microbiological reviews [American Society for Microbiology]
卷期号:55 (1): 35-58 被引量:490
标识
DOI:10.1128/mmbr.55.1.35-58.1991
摘要

The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Takk采纳,获得100
1秒前
南部发布了新的文献求助10
1秒前
zdh完成签到,获得积分10
4秒前
5秒前
Xin完成签到,获得积分10
5秒前
6秒前
搜集达人应助hh采纳,获得10
6秒前
7秒前
传奇3应助氼乚采纳,获得30
7秒前
直率香寒完成签到,获得积分10
8秒前
lxk666完成签到,获得积分10
9秒前
科研通AI5应助个性的友蕊采纳,获得30
11秒前
滕擎发布了新的文献求助10
11秒前
12秒前
12秒前
Xin发布了新的文献求助10
13秒前
希望天下0贩的0应助江江采纳,获得10
14秒前
16秒前
17秒前
cc发布了新的文献求助10
17秒前
17秒前
Aniee完成签到,获得积分10
20秒前
顾矜应助槑槑采纳,获得10
20秒前
21秒前
21秒前
21秒前
21秒前
23秒前
氼乚发布了新的文献求助30
23秒前
Ade阿德完成签到,获得积分10
23秒前
23秒前
星辰大海应助搞怪远侵采纳,获得10
25秒前
25秒前
打打应助111采纳,获得30
26秒前
田様应助白华苍松采纳,获得10
26秒前
Caesar发布了新的文献求助10
27秒前
罗luoluo完成签到,获得积分10
27秒前
小达发布了新的文献求助10
28秒前
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496762
求助须知:如何正确求助?哪些是违规求助? 3081490
关于积分的说明 9167594
捐赠科研通 2774421
什么是DOI,文献DOI怎么找? 1522434
邀请新用户注册赠送积分活动 705995
科研通“疑难数据库(出版商)”最低求助积分说明 703178