Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange

电解质 法拉第效率 电化学 阳极 锂(药物) 钝化 相间 化学 离子交换 交换电流密度 快离子导体 无机化学 材料科学 化学工程 电极 离子 纳米技术 物理化学 图层(电子) 塔菲尔方程 有机化学 内分泌学 工程类 生物 医学 遗传学
作者
Gustavo M. Hobold,Kyeong‐Ho Kim,Betar M. Gallant
标识
DOI:10.26434/chemrxiv-2022-j04d3
摘要

Despite being a leading candidate to meet stringent energy targets of Li-ion batteries, the lithium (Li) metal anode has yet to achieve Coulombic efficiency (CE) requirements for long cycle life (>99.9%), particularly at high rates (>1 C). These limitations derive from the native solid electrolyte interphase (SEI) which, among multiple functions, stabilizes and protects deposited Li. The SEI also plays a critical role in regulating Li+ exchange between the electrolyte and the electrode, but quantification of this effect has been non-straightforward, and a general relationship between Li+ exchange and CE has not been clearly elucidated to date. Using electrochemical impedance and voltammetry, we report self-consistent Li+ exchange values of native SEIs over a range of relevant electrolytes with CE spanning 78.0% to >99%. CE and its retention at high rates are found to be positively correlated with the rate of SEI Li+ exchange. Additionally, Li+ exchange rates increased during cycling in high-CE electrolytes, in some cases by an order of magnitude to exceed 10 mA/cm2, whereas for low-CE electrolytes they remained low (<1 mA/cm2), revealing a chemistry-dependent picture of SEI evolution with often-complex dynamics. The evolution in Li+ exchange unique to high-CE electrolytes also provides insights into the role and effectiveness of the formation cycle on Cu current collectors upon the first plating step. Altogether, these findings indicate that Li+ exchange governs several key processes related to Li deposition and cycling efficiency. Consequently, its quantification can help to guide future high-CE electrolyte design, particularly targeting high rates (>1 mA/cm2).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜寒香发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
3秒前
DenM7完成签到,获得积分10
4秒前
6秒前
脑洞疼应助DOCTORLI采纳,获得10
8秒前
邹葶完成签到,获得积分10
10秒前
无敌反派大美人应助Why采纳,获得10
11秒前
Steven发布了新的文献求助10
12秒前
JING发布了新的文献求助10
12秒前
lihaoxiao2004完成签到,获得积分10
12秒前
xiemeili完成签到 ,获得积分10
13秒前
14秒前
15秒前
asdfj应助lihaoxiao2004采纳,获得10
17秒前
路灯下的小伙完成签到,获得积分10
17秒前
ghmghm9910发布了新的文献求助10
20秒前
21秒前
Lee6655完成签到,获得积分10
21秒前
冉景平完成签到 ,获得积分10
23秒前
小西米发布了新的文献求助10
24秒前
Steven完成签到,获得积分10
28秒前
Kai完成签到,获得积分10
30秒前
31秒前
33秒前
zlll完成签到,获得积分10
34秒前
35秒前
Kai发布了新的文献求助10
36秒前
May完成签到,获得积分10
36秒前
DOCTORLI发布了新的文献求助10
37秒前
38秒前
55555发布了新的文献求助30
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Divinatorische Texte II. Opferschau-Omina 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358826
求助须知:如何正确求助?哪些是违规求助? 2981909
关于积分的说明 8701218
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196