Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange

电解质 法拉第效率 电化学 阳极 锂(药物) 钝化 相间 化学 离子交换 交换电流密度 快离子导体 无机化学 材料科学 化学工程 电极 离子 纳米技术 物理化学 图层(电子) 塔菲尔方程 有机化学 内分泌学 工程类 生物 医学 遗传学
作者
Gustavo M. Hobold,Kyeong‐Ho Kim,Betar M. Gallant
标识
DOI:10.26434/chemrxiv-2022-j04d3
摘要

Despite being a leading candidate to meet stringent energy targets of Li-ion batteries, the lithium (Li) metal anode has yet to achieve Coulombic efficiency (CE) requirements for long cycle life (>99.9%), particularly at high rates (>1 C). These limitations derive from the native solid electrolyte interphase (SEI) which, among multiple functions, stabilizes and protects deposited Li. The SEI also plays a critical role in regulating Li+ exchange between the electrolyte and the electrode, but quantification of this effect has been non-straightforward, and a general relationship between Li+ exchange and CE has not been clearly elucidated to date. Using electrochemical impedance and voltammetry, we report self-consistent Li+ exchange values of native SEIs over a range of relevant electrolytes with CE spanning 78.0% to >99%. CE and its retention at high rates are found to be positively correlated with the rate of SEI Li+ exchange. Additionally, Li+ exchange rates increased during cycling in high-CE electrolytes, in some cases by an order of magnitude to exceed 10 mA/cm2, whereas for low-CE electrolytes they remained low (<1 mA/cm2), revealing a chemistry-dependent picture of SEI evolution with often-complex dynamics. The evolution in Li+ exchange unique to high-CE electrolytes also provides insights into the role and effectiveness of the formation cycle on Cu current collectors upon the first plating step. Altogether, these findings indicate that Li+ exchange governs several key processes related to Li deposition and cycling efficiency. Consequently, its quantification can help to guide future high-CE electrolyte design, particularly targeting high rates (>1 mA/cm2).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助chall采纳,获得10
1秒前
自由的梦蕊完成签到,获得积分10
1秒前
cosy完成签到,获得积分10
2秒前
ee发布了新的文献求助10
2秒前
3秒前
笨笨如之完成签到 ,获得积分10
4秒前
4秒前
高访蕊发布了新的文献求助10
4秒前
4秒前
5秒前
乐乐应助啦啦啦采纳,获得10
5秒前
5秒前
能干储发布了新的文献求助10
5秒前
举人烧烤发布了新的文献求助10
7秒前
cosy发布了新的文献求助10
8秒前
8秒前
科研通AI6应助粗心的从露采纳,获得10
8秒前
9秒前
脑洞疼应助emoji采纳,获得10
9秒前
傲娇剑心完成签到,获得积分20
9秒前
qing_li完成签到,获得积分10
10秒前
感动的铁身关注了科研通微信公众号
11秒前
Satan完成签到,获得积分10
11秒前
13秒前
王钰绮发布了新的文献求助10
13秒前
王欧尼发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
白木子衬完成签到,获得积分10
15秒前
情怀应助刘卿婷采纳,获得10
15秒前
九月完成签到,获得积分10
17秒前
18秒前
简单的可乐完成签到,获得积分10
18秒前
科研通AI6应助哈no采纳,获得10
19秒前
完美世界应助YE采纳,获得10
19秒前
wxn发布了新的文献求助10
19秒前
Ava应助Hinsen采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707