A Descriptor Set for Quantitative Structure‐property Relationship Prediction in Biologics

数量结构-活动关系 计算机科学 生物信息学 理论(学习稳定性) 药物开发 机器学习 生化工程 药物发现 人工智能 集合(抽象数据类型) 过程(计算) 数据挖掘 生物系统 药品 化学 生物信息学 生物 生物化学 工程类 药理学 基因 程序设计语言 操作系统
作者
Kannan Sankar,Kyle Trainor,Levi L. Blazer,Jarrett Adams,Sachdev S. Sidhu,Tyler Day,Elizabeth M. Meiering,Johannes K. X. Maier
出处
期刊:Molecular Informatics [Wiley]
卷期号:41 (9): 2100240-2100240 被引量:2
标识
DOI:10.1002/minf.202100240
摘要

There has been a remarkable increase in the number of biologics, especially monoclonal antibodies, in the market over the last decade. In addition to attaining the desired binding to their targets, a crucial aspect is the 'developability' of these drugs, which includes several desirable properties such as high solubility, low viscosity and aggregation, physico-chemical stability, low immunogenicity and low poly-specificity. The lack of any of these desirable properties can lead to significant hurdles in advancing them to the clinic and are often discovered only during late stages of drug development. Hence, in silico methods for early detection of these properties, particularly the ones that affect aggregation and solubility in the earlier stages can be highly beneficial. We have developed a computational framework based on a large and diverse set of protein specific descriptors that is ideal for making liability predictions using a QSPR (quantitative structure-property relationship) approach. This set offers a high degree of feature diversity that may coarsely be classified based on (1) sequence (2) structure and (3) surface patches. We assess the sensitivity and applicability of these descriptors in four dedicated case studies that are believed to be representative of biophysical characterizations commonly employed during the development process of a biologics drug candidate. In addition to data sets obtained from public sources, we have validated the descriptors on novel experimental data sets in order to address antibody developability and to generate prospective predictions on Adnectins. The results show that the descriptors are well suited to assist in the improvement of protein properties of systems that exhibit poor solubility or aggregation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起点完成签到,获得积分10
3秒前
4秒前
6秒前
在水一方应助早睡早起采纳,获得10
8秒前
谨言完成签到 ,获得积分10
13秒前
默默惋清发布了新的文献求助10
15秒前
16秒前
汉堡包应助科研小趴菜采纳,获得10
18秒前
所所应助ffiu采纳,获得10
20秒前
自觉南风完成签到,获得积分10
21秒前
23秒前
李小心应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
paparazzi221应助科研通管家采纳,获得50
26秒前
26秒前
情怀应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
26秒前
Lucas应助坚强擎汉采纳,获得10
27秒前
27秒前
12完成签到 ,获得积分20
27秒前
28秒前
住在魔仙堡的鱼完成签到 ,获得积分10
30秒前
直率安双完成签到,获得积分10
32秒前
32秒前
Kk发布了新的文献求助10
33秒前
水博士完成签到,获得积分10
34秒前
34秒前
书记完成签到,获得积分10
35秒前
37秒前
zbumian发布了新的文献求助10
38秒前
今后应助Kk采纳,获得30
39秒前
ffiu发布了新的文献求助10
39秒前
默默惋清完成签到,获得积分10
44秒前
44秒前
44秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043