Effects of interstitial water and alkali cations on the expansion, intercalation potential, and orbital coupling of nickel hexacyanoferrate from first principles

插层(化学) 普鲁士蓝 电化学 水溶液 化学 从头算 从头算量子化学方法 化学物理 无机化学 密度泛函理论 材料科学 计算化学 分子 电极 物理化学 有机化学
作者
Sizhe Liu,Kyle C. Smith
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:131 (10) 被引量:3
标识
DOI:10.1063/5.0080547
摘要

Prussian blue analogs (PBAs) are an important material class for aqueous electrochemical separations and energy storage owing to their ability to reversibly intercalate monovalent cations. However, incorporating interstitial H2O molecules in the ab initio study of PBAs is technically challenging, though essential to understanding the interactions between interstitial water, interstitial cations, and the framework lattice that affect intercalation potential and cation intercalation selectivity. Accordingly, we introduce and use a method that combines the efficiency of machine-learning models with the accuracy of ab initio calculations to elucidate mechanisms of (1) lattice expansion upon intercalation of cations of different sizes, (2) selectivity bias toward intercalating hydrophobic cations of large size, and (3) semiconductor–conductor transitions from anhydrous to hydrated lattices. We analyze the PBA nickel hexacyanoferrate [NiFe(CN)6] due to its structural stability and electrochemical activity in aqueous electrolytes. Here, grand potential analysis is used to determine the equilibrium degree of hydration for a given intercalated cation (Na+, K+, or Cs+) and NiFe(CN)6 oxidation state based on pressure-equilibrated structures determined with the aid of machine learning and simulated annealing. The results imply new directions for the rational design of future cation-intercalation electrode materials that optimize performance in various electrochemical applications, and they demonstrate the importance of choosing an appropriate calculation framework to predict the properties of PBA lattices accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
魔幻安南发布了新的文献求助10
1秒前
爆米花应助舒心的芝麻采纳,获得10
1秒前
Victoria发布了新的文献求助10
2秒前
haofan17完成签到,获得积分10
4秒前
王秋婷发布了新的文献求助10
4秒前
yyqx1128完成签到,获得积分10
4秒前
4秒前
李健应助小超人哈里采纳,获得30
5秒前
wang完成签到 ,获得积分10
5秒前
小明日天发布了新的文献求助10
5秒前
8秒前
赘婿应助刘松采纳,获得10
9秒前
9秒前
酷酷元风完成签到,获得积分10
10秒前
月青悠完成签到,获得积分10
11秒前
小池同学完成签到,获得积分10
11秒前
12秒前
MJQ完成签到,获得积分10
12秒前
小明日天完成签到,获得积分10
12秒前
13秒前
雪白的面包完成签到 ,获得积分10
13秒前
mayberichard发布了新的文献求助10
13秒前
14秒前
章鱼哥完成签到,获得积分10
14秒前
现实马里奥完成签到,获得积分10
14秒前
毛豆应助路宝采纳,获得10
14秒前
15秒前
MJQ发布了新的文献求助10
15秒前
15秒前
wandaiji发布了新的文献求助10
16秒前
哎哟完成签到,获得积分10
16秒前
刘松完成签到,获得积分20
18秒前
畅快香菇发布了新的文献求助10
19秒前
Orange应助王秋婷采纳,获得10
19秒前
外向的跳跳糖完成签到,获得积分10
19秒前
xff完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI2S应助酷酷的蚂蚁采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465