亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助TQY采纳,获得10
刚刚
4秒前
9秒前
147发布了新的文献求助10
9秒前
希望天下0贩的0应助andrele采纳,获得10
10秒前
坚强觅珍完成签到 ,获得积分10
11秒前
12秒前
12秒前
14秒前
15秒前
于风完成签到,获得积分10
15秒前
chongqi发布了新的文献求助10
18秒前
19秒前
TQY发布了新的文献求助10
19秒前
暴躁的依秋完成签到,获得积分10
20秒前
c123完成签到 ,获得积分10
23秒前
折柳完成签到 ,获得积分10
23秒前
25秒前
111发布了新的文献求助10
26秒前
早日毕业脱离苦海完成签到 ,获得积分10
28秒前
TQY完成签到,获得积分20
31秒前
31秒前
35秒前
潦草小狗发布了新的文献求助10
39秒前
ysys发布了新的文献求助10
39秒前
小小大大小完成签到,获得积分10
40秒前
鳎mu完成签到,获得积分10
41秒前
hovumath应助忧伤的桐采纳,获得200
45秒前
max完成签到,获得积分10
46秒前
星辰大海应助菜根谭采纳,获得10
46秒前
55秒前
小哈完成签到,获得积分10
56秒前
科研通AI2S应助淡定的乐安采纳,获得10
59秒前
59秒前
搜集达人应助科研通管家采纳,获得10
59秒前
星辰大海应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得20
1分钟前
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795121
捐赠科研通 4631465
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617