Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
source发布了新的文献求助10
刚刚
ZelongWang完成签到,获得积分20
1秒前
九月亦星发布了新的文献求助10
1秒前
刘芸若诗发布了新的文献求助10
1秒前
科研通AI6应助不知道叫哈采纳,获得10
1秒前
swq发布了新的文献求助10
1秒前
2秒前
蓝朱发布了新的文献求助10
3秒前
英姑应助邵洋采纳,获得10
3秒前
搜集达人应助tigger采纳,获得10
3秒前
4秒前
小马甲应助zbszd采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
沉静傥完成签到,获得积分10
6秒前
Wangshengnan完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
酷波er应助梦红尘采纳,获得10
7秒前
桐桐应助Genius采纳,获得10
8秒前
刘芸若诗完成签到,获得积分10
8秒前
Z_Z完成签到,获得积分10
8秒前
9秒前
哈哈哈哈哈完成签到,获得积分10
9秒前
10秒前
开心超人发布了新的文献求助10
10秒前
风声亦寒发布了新的文献求助10
10秒前
顾矜应助Miriammmmm采纳,获得10
10秒前
CodeCraft应助李晶晶采纳,获得10
11秒前
11秒前
12秒前
LQY完成签到,获得积分20
13秒前
可爱的函函应助lemon采纳,获得20
14秒前
15秒前
小雒雒完成签到,获得积分10
15秒前
香蕉觅云应助陈文文采纳,获得10
15秒前
LQY发布了新的文献求助10
16秒前
超级冬瓜发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483