Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
映易发布了新的文献求助10
1秒前
1秒前
小木安华发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
jian应助近代采纳,获得10
2秒前
香蕉觅云应助近代采纳,获得10
2秒前
田様应助近代采纳,获得10
2秒前
科研通AI6应助LGeng采纳,获得10
2秒前
池鱼应助近代采纳,获得10
2秒前
pluto应助近代采纳,获得10
2秒前
pluto应助近代采纳,获得10
2秒前
共享精神应助近代采纳,获得10
2秒前
Ljx发布了新的文献求助20
2秒前
wanci应助qwe123采纳,获得20
3秒前
3秒前
温柔丹萱完成签到,获得积分10
4秒前
勤劳煎蛋完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
星辰大海应助激情的初阳采纳,获得10
4秒前
5秒前
5秒前
机智的锦程完成签到 ,获得积分10
5秒前
小二郎应助QQ采纳,获得10
5秒前
5秒前
熠云发布了新的文献求助10
6秒前
6秒前
7秒前
小马甲应助D&L采纳,获得10
7秒前
科研小霖发布了新的文献求助20
7秒前
001完成签到,获得积分10
7秒前
嗯哼发布了新的文献求助10
7秒前
安详靖柏发布了新的文献求助10
8秒前
顾矜应助ZJL采纳,获得10
8秒前
生信小菜鸟完成签到,获得积分10
8秒前
李汀发布了新的文献求助10
8秒前
9秒前
percy发布了新的文献求助10
9秒前
浮游应助勤奋傲儿采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398