Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
田様应助魏万天采纳,获得10
3秒前
含糊的念梦完成签到,获得积分10
4秒前
6秒前
淳于安筠完成签到,获得积分10
8秒前
10秒前
斯文败类应助Yuuuqi采纳,获得10
10秒前
有魅力荟完成签到,获得积分10
11秒前
LZR完成签到,获得积分10
11秒前
谭梓维完成签到 ,获得积分10
11秒前
黑布林大李子完成签到,获得积分0
11秒前
隐形曼青应助SchurrleHao采纳,获得10
14秒前
zbx发布了新的文献求助10
15秒前
等待的太阳完成签到,获得积分10
15秒前
金金金完成签到 ,获得积分10
15秒前
16秒前
16秒前
Jasper应助大橙子采纳,获得10
16秒前
白衣修身发布了新的文献求助10
17秒前
20秒前
姚姚完成签到,获得积分20
20秒前
白枫完成签到 ,获得积分10
20秒前
和平港湾发布了新的文献求助10
21秒前
涂惠芳发布了新的文献求助10
22秒前
文茵完成签到,获得积分10
23秒前
李小刚完成签到,获得积分10
24秒前
稳重的汉堡完成签到 ,获得积分10
26秒前
深情安青应助zbx采纳,获得10
26秒前
lalala发布了新的文献求助10
26秒前
加油呀完成签到,获得积分10
28秒前
iperper完成签到,获得积分10
28秒前
29秒前
29秒前
科研人发布了新的文献求助20
29秒前
30秒前
ccm应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
33秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620