Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
Hello应助酷酷纹采纳,获得10
2秒前
3秒前
5秒前
大个应助王璐瑶采纳,获得10
5秒前
5秒前
肖鹏发布了新的文献求助10
6秒前
孤鸿影98发布了新的文献求助10
6秒前
欧阳慕山发布了新的文献求助10
6秒前
6秒前
坦率灵槐应助sjh采纳,获得10
7秒前
dyy完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
8秒前
8秒前
在水一方应助解泽星采纳,获得10
9秒前
9秒前
李健的小迷弟应助华花花采纳,获得10
9秒前
liuxingcen完成签到,获得积分10
10秒前
hanzhiyuxing发布了新的文献求助10
11秒前
烟花应助跳跃虔采纳,获得10
11秒前
科研通AI6应助LJY采纳,获得10
12秒前
Tourist应助企鹅采纳,获得10
13秒前
likexin发布了新的文献求助10
13秒前
mly完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
yan发布了新的文献求助10
17秒前
朴实孤云完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
陈瑞完成签到,获得积分10
19秒前
20秒前
王璐瑶发布了新的文献求助10
21秒前
所所应助橘子采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632465
求助须知:如何正确求助?哪些是违规求助? 4726925
关于积分的说明 14982122
捐赠科研通 4790432
什么是DOI,文献DOI怎么找? 2558280
邀请新用户注册赠送积分活动 1518679
关于科研通互助平台的介绍 1479141