已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of grain quality parameters in rice for high‐throughput screening with near‐infrared spectroscopy and deep learning

主成分分析 模式识别(心理学) 线性判别分析 人工智能 预处理器 数学 偏最小二乘回归 计算机科学 生物系统 统计 生物
作者
Prabahar Ravichandran,Sadhasivam Viswanathan,Sridhar Ravichandran,Ya‐Jun Pan,Young K. Chang
出处
期刊:Cereal chemistry [Wiley]
卷期号:99 (4): 907-919 被引量:7
标识
DOI:10.1002/cche.10546
摘要

Abstract Background and Objectives Grain quality is a complex trait in rice, compared with other staple crops as it is predominantly consumed as a whole grain. Although considered secondary to yield, to align with consumer preferences, breeders are increasingly interested in quality. At the early stages of a breeding program, grain quality‐related traits are often ignored as they are arduous and time‐consuming. Near‐infrared spectroscopy (NIRS) could be a suitable high‐throughput alternative to conventional wet chemistry and image processing‐related methods to be adopted for early screening. This study aims to quantify traits essential for rice breeders such as amylose, chalkiness, length, width, and the length/width ratio in rice samples with NIRS. We used conventional algorithms such as principal component analysis (PCA), partial least square regression (PLSR), multilayer perceptron (MLP), support vector classification (SVC), and linear discriminant analysis (LDA) to compare with the proposed convolutional neural network (CNN) for regression and classification. Findings Our results showed that the proposed CNN outperformed the conventional models in estimating all traits. Unlike conventional models, CNN models could be developed with raw spectra with minimal to no preprocessing, and along with the transfer‐learning capabilities, the time required for model development could be significantly reduced. Conclusion We recommend NIRS for quantitative estimation of amylose and chalkiness in rice and rather use classification/categorized estimation for other physical dimension‐related traits such as length and length/width ratio. Significance and Novelty We found NIRS to be an appropriate alternative to wet chemistry and image‐based methods for screening lines at the early stages of the breeding program. Estimation of physical parameters such as length and length/width ratio with NIRS is novel and appears reasonable for high‐throughput applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助ddli采纳,获得10
1秒前
无花果应助ddli采纳,获得10
1秒前
orixero应助ddli采纳,获得10
1秒前
汉堡包应助ddli采纳,获得10
1秒前
zeercher完成签到,获得积分10
7秒前
wgm完成签到,获得积分10
7秒前
Grace发布了新的文献求助10
8秒前
顾矜应助ddli采纳,获得10
10秒前
完美世界应助ddli采纳,获得10
10秒前
李健的粉丝团团长应助ddli采纳,获得10
10秒前
思源应助ddli采纳,获得10
10秒前
华仔应助ddli采纳,获得10
10秒前
CodeCraft应助ddli采纳,获得10
11秒前
李健的粉丝团团长应助ddli采纳,获得10
11秒前
顾矜应助ddli采纳,获得10
11秒前
我是老大应助ddli采纳,获得10
11秒前
传奇3应助ddli采纳,获得10
11秒前
11秒前
wuyuan完成签到,获得积分10
12秒前
能干的蜗牛完成签到 ,获得积分10
14秒前
14秒前
17秒前
tixian发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
Wayne72完成签到,获得积分0
20秒前
林夕完成签到,获得积分10
21秒前
blue发布了新的文献求助10
22秒前
xdc发布了新的文献求助10
22秒前
科研力力完成签到 ,获得积分10
22秒前
Jasper应助Baobao采纳,获得10
23秒前
slx发布了新的文献求助30
23秒前
Grace完成签到,获得积分10
26秒前
Jing完成签到 ,获得积分10
27秒前
zeercher发布了新的文献求助10
28秒前
OLAY完成签到,获得积分10
30秒前
执着的鹏煊完成签到,获得积分10
31秒前
CipherSage应助叫秋田犬的猫采纳,获得10
37秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731