亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart process development: Application of machine‐learning and integrated process modeling for inclusion body purification processes

计算机科学 过程(计算) 机器学习 过程建模 人工智能 Boosting(机器学习) 下游(制造业) 机组运行 高斯过程 工艺优化 高斯分布 工程类 环境工程 量子力学 操作系统 物理 化学工程 运营管理
作者
Cornelia Walther,Martin Voigtmann,E. Bruna,Ali Abusnina,Anne‐Luise Tscheließnig,Michael Allmer,Hermann Schuchnigg,Cécile Brocard,Alexandra Föttinger‐Vacha,Georg Klima
出处
期刊:Biotechnology Progress [Wiley]
卷期号:38 (3) 被引量:8
标识
DOI:10.1002/btpr.3249
摘要

The development of a biopharmaceutical production process usually occurs sequentially, and tedious optimization of each individual unit operation is very time-consuming. Here, the conditions established as optimal for one-step serve as input for the following step. Yet, this strategy does not consider potential interactions between a priori distant process steps and therefore cannot guarantee for optimal overall process performance. To overcome these limitations, we established a smart approach to develop and utilize integrated process models using machine learning techniques and genetic algorithms. We evaluated the application of the data-driven models to explore potential efficiency increases and compared them to a conventional development approach for one of our development products. First, we developed a data-driven integrated process model using gradient boosting machines and Gaussian processes as machine learning techniques and a genetic algorithm as recommendation engine for two downstream unit operations, namely solubilization and refolding. Through projection of the results into our large-scale facility, we predicted a twofold increase in productivity. Second, we extended the model to a three-step model by including the capture chromatography. Here, depending on the selected baseline-process chosen for comparison, we obtained between 50% and 100% increase in productivity. These data show the successful application of machine learning techniques and optimization algorithms for downstream process development. Finally, our results highlight the importance of considering integrated process models for the whole process chain, including all unit operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
11秒前
14秒前
15秒前
17秒前
ZXX发布了新的文献求助10
18秒前
21秒前
26秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
小蘑菇应助pp采纳,获得10
48秒前
Ava应助ZXX采纳,获得10
56秒前
pp给pp的求助进行了留言
1分钟前
ClarkClarkson完成签到,获得积分10
1分钟前
1分钟前
小手姑娘发布了新的文献求助10
1分钟前
2分钟前
ZXX发布了新的文献求助10
2分钟前
2分钟前
2分钟前
涂烁发布了新的文献求助30
2分钟前
大胆初翠完成签到,获得积分20
2分钟前
小手姑娘完成签到,获得积分10
2分钟前
涂烁完成签到,获得积分10
2分钟前
爆米花应助kkkayle采纳,获得10
3分钟前
3分钟前
kkkayle发布了新的文献求助10
3分钟前
xuli21315完成签到 ,获得积分10
3分钟前
lzy完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
FashionBoy应助yuyu采纳,获得10
4分钟前
4分钟前
吴彦祖发布了新的文献求助10
5分钟前
5分钟前
Doctor_jie完成签到 ,获得积分10
5分钟前
5分钟前
wyz完成签到 ,获得积分10
5分钟前
吴彦祖完成签到,获得积分10
6分钟前
思源应助睡不着才怪采纳,获得10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505215
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867