材料科学
阴极
储能
碳纤维
电化学
扩散
化学工程
离子
阳极
锌
多孔性
纳米技术
复合材料
冶金
电极
电气工程
化学
工程类
功率(物理)
有机化学
物理化学
物理
复合数
热力学
量子力学
作者
Yingchao Wang,Guangshen Jiang,Zhuo Zhang,Hanchu Chen,Yutong Li,Debin Kong,Xin Qin,Yanyan Li,Xinghao Zhang,Hui Wang
标识
DOI:10.1002/ente.202101170
摘要
Rechargeable Zn‐ion batteries (ZIBs) are regarded as one of the most promising energy storage systems due to their non‐toxicity, low cost, and non‐flammability features. However, exploring flexible and high‐capacity devices with prominent cycling still remains a challenge for ZIBs. Herein, a flexible and binder‐free carbon cloth coated by V 2 O 5 (namely, CC@V 2 O 5 ) cathode material is prepared through a simple solvothermal method. The cable‐like CC@V 2 O 5 provides abundant active sites and highways for electrons transport. Meanwhile, the layered structure of V 2 O 5 can also facilitate zinc ion diffusion. The galvanostatic intermittent titration technique indicates that the zinc‐ion diffusion coefficient of CC@V 2 O 5 is much higher than that of the commercial V 2 O 5 . As a result, the CC@V 2 O 5 exhibits excellent electrochemical performance and outstanding bendability arising from the synergistic effect between porous V 2 O 5 and carbon cloth, in terms of a remarkable discharge capacity (296 mAh g −1 at 3 A g −1 ), superior rate capability (241 mAh g −1 at 5 A g −1 ), and long‐term stability with a capacity retention of 87.1% over 2200 cycles. The novel strategy proposed in this study may provide guidance for exploiting high‐performance flexible systems and wearable energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI