Machine Learning Based Real-Time Diagnosis of Mental Stress Using Photoplethysmography

光容积图 心率变异性 精神压力 人工智能 计算机科学 特征(语言学) 压力(语言学) 区间(图论) 支持向量机 心率 模式识别(心理学) 机器学习 医学 数学 内科学 血压 计算机视觉 滤波器(信号处理) 组合数学 语言学 哲学
作者
Talha Anwar,Seemab Zakir
出处
期刊:Journal of Biomimetics, Biomaterials and Biomedical Engineering 卷期号:55: 154-167 被引量:7
标识
DOI:10.4028/p-01r9mn
摘要

Mental stress is a natural response to life activities. However, acute and prolonged stress may cause psychological and heart diseases. Heart rate variability (HRV) is considered an indicator of mental stress and physical fitness. The standard way of obtaining HRV is using electrocardiography (ECG) as the time interval between two consecutive R-peaks. ECG signal is collected by attaching electrodes on different locations of the body, which need a proper clinical setup and is costly as well; therefore, it is not feasible to monitor stress with ECG. Photoplethysmography (PPG) is considered an alternative for mental stress detection using pulse rate variability (PRV), the time interval between two successive peaks of PPG. This study aims to diagnose daily life stress using low-cost portable PPG devices instead of lab trials and expensive devices. Data is collected from 27 subjects both in rest and in stressed conditions in daily life routine. Thirty-six time domain, frequency domain, and non-linear features are extracted from PRV. Multiple machine learning classifiers are used to classify these features. Recursive feature elimination, student t-test and genetic algorithm are used to select these features. An accuracy of 72% is achieved using stratified leave out cross-validation using K-Nearest Neighbor, and it increased up to 81% using a genetic algorithm. Once the model is trained with the best features selected with the genetic algorithm, we used the trained weights for the real-time prediction of mental stress. The results show that using a low-cost device; stress can be diagnosed in real life. The proposed method enable the regular monitoring of stress in short time that help to control the occurrence of psychological and cardiovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
田様应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
Li chun sheng发布了新的文献求助10
2秒前
2秒前
medlive2020发布了新的文献求助10
3秒前
3秒前
天天快乐应助Shaw采纳,获得10
4秒前
charon发布了新的文献求助10
4秒前
尔东发布了新的文献求助10
4秒前
spring完成签到,获得积分10
4秒前
于晓军发布了新的文献求助10
4秒前
mmr发布了新的文献求助10
5秒前
ywang发布了新的文献求助10
6秒前
6秒前
wjfjs2cd发布了新的文献求助10
7秒前
大模型应助earthclean采纳,获得10
7秒前
long应助疯狂的绮山采纳,获得10
7秒前
xiaoguang应助乌拉乌拉采纳,获得20
7秒前
噜啦啦发布了新的文献求助10
8秒前
天才罗发布了新的文献求助10
8秒前
8秒前
英俊的铭应助Fan采纳,获得10
8秒前
无花果应助陶醉的鹤轩采纳,获得30
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269