Machine Learning Based Real-Time Diagnosis of Mental Stress Using Photoplethysmography

光容积图 心率变异性 精神压力 人工智能 计算机科学 特征(语言学) 压力(语言学) 区间(图论) 支持向量机 心率 模式识别(心理学) 机器学习 医学 数学 内科学 血压 计算机视觉 语言学 哲学 滤波器(信号处理) 组合数学
作者
Talha Anwar,Seemab Zakir
出处
期刊:Journal of Biomimetics, Biomaterials and Biomedical Engineering 卷期号:55: 154-167 被引量:7
标识
DOI:10.4028/p-01r9mn
摘要

Mental stress is a natural response to life activities. However, acute and prolonged stress may cause psychological and heart diseases. Heart rate variability (HRV) is considered an indicator of mental stress and physical fitness. The standard way of obtaining HRV is using electrocardiography (ECG) as the time interval between two consecutive R-peaks. ECG signal is collected by attaching electrodes on different locations of the body, which need a proper clinical setup and is costly as well; therefore, it is not feasible to monitor stress with ECG. Photoplethysmography (PPG) is considered an alternative for mental stress detection using pulse rate variability (PRV), the time interval between two successive peaks of PPG. This study aims to diagnose daily life stress using low-cost portable PPG devices instead of lab trials and expensive devices. Data is collected from 27 subjects both in rest and in stressed conditions in daily life routine. Thirty-six time domain, frequency domain, and non-linear features are extracted from PRV. Multiple machine learning classifiers are used to classify these features. Recursive feature elimination, student t-test and genetic algorithm are used to select these features. An accuracy of 72% is achieved using stratified leave out cross-validation using K-Nearest Neighbor, and it increased up to 81% using a genetic algorithm. Once the model is trained with the best features selected with the genetic algorithm, we used the trained weights for the real-time prediction of mental stress. The results show that using a low-cost device; stress can be diagnosed in real life. The proposed method enable the regular monitoring of stress in short time that help to control the occurrence of psychological and cardiovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
辣味锅包肉完成签到,获得积分10
1秒前
兴奋千兰发布了新的文献求助10
1秒前
隐形曼青应助111111采纳,获得10
3秒前
3秒前
dara发布了新的文献求助10
4秒前
hello发布了新的文献求助10
5秒前
唐Doctor发布了新的文献求助10
5秒前
Akim应助小唐尼采纳,获得30
5秒前
醉熏的鑫关注了科研通微信公众号
6秒前
无花果应助hua采纳,获得10
6秒前
小情绪完成签到 ,获得积分10
6秒前
科研通AI2S应助Kris采纳,获得10
11秒前
12秒前
彭于晏应助儒雅的梦芝采纳,获得10
13秒前
CodeCraft应助哈利波特采纳,获得10
14秒前
李爱国应助唐Doctor采纳,获得10
16秒前
17秒前
17秒前
18秒前
19秒前
anna发布了新的文献求助10
19秒前
21秒前
22秒前
杪杪发布了新的文献求助10
22秒前
24秒前
hua发布了新的文献求助10
24秒前
小仙丹完成签到,获得积分20
24秒前
25秒前
锦城纯契完成签到 ,获得积分10
25秒前
feng1235发布了新的文献求助20
26秒前
gxzsdf完成签到 ,获得积分10
27秒前
GGBOND发布了新的文献求助10
27秒前
知性的剑身完成签到,获得积分10
27秒前
Dalia完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
萨日呼发布了新的文献求助10
30秒前
史念薇完成签到,获得积分10
31秒前
传奇3应助晓晓采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105