催化作用
化学
纳米技术
同种类的
纳米尺度
钯
纳米颗粒
粒子(生态学)
多相催化
化学工程
化学物理
材料科学
物理
统计物理学
有机化学
海洋学
地质学
工程类
作者
Dmitry B. Eremin,Alexey S. Galushko,Daniil A. Boiko,Evgeniy O. Pentsak,Igor V. Chistyakov,Valentine P. Ananikov
摘要
Homogeneous catalysis is typically considered "well-defined" from the standpoint of catalyst structure unambiguity. In contrast, heterogeneous nanocatalysis often falls into the realm of "poorly defined" systems. Supported catalysts are difficult to characterize due to their heterogeneity, variety of morphologies, and large size at the nanoscale. Furthermore, an assortment of active metal nanoparticles examined on the support are negligible compared to those in the bulk catalyst used. To solve these challenges, we studied individual particles of the supported catalyst. We made a significant step forward to fully characterize individual catalyst particles. Combining a nanomanipulation technique inside a field-emission scanning electron microscope with neural network analysis of selected individual particles unexpectedly revealed important aspects of activity for widespread and commercially important Pd/C catalysts. The proposed approach unleashed an unprecedented turnover number of 109 attributed to individual palladium on a nanoglobular carbon particle. Offered in the present study is the Totally Defined Catalysis concept that has tremendous potential for the mechanistic research and development of high-performance catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI