A time-dependent vessel routing problem with speed optimization

计算机科学 解算器 启发式 运筹学 数学优化 延期 布线(电子设计自动化) 集合(抽象数据类型) 整数规划 燃料效率 比例(比率) 运营管理 数学 工程类 算法 汽车工程 地理 计算机网络 程序设计语言 地图学
作者
Karl Petter Ulsrud,Anders Helgeland Vandvik,Andreas Breivik Ormevik,Kjetil Fagerholt,Frank Meisel
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:303 (2): 891-907 被引量:14
标识
DOI:10.1016/j.ejor.2022.03.015
摘要

We study an operational planning problem arising in the offshore oil and gas industry, in which we determine routes, as well as sailing speeds along these routes, for a set of platform supply vessels (PSVs) servicing a given set of delivery and pickup orders such that costs are minimized. The sailing costs, mainly induced by fuel consumption for the PSVs, heavily depend on the chosen sailing speeds. Furthermore, the fuel consumption and the feasible speed ranges for the PSVs are largely affected by weather conditions that may vary over time, resulting in a weather- or Time-Dependent Vessel Routing Problem with Speed Optimization (TDVRP-SO). Optional decisions include the postponement of certain orders and the chartering of spot vessels, both associated with additional costs. We present a time-discrete mixed integer programming (MIP) model for the TDVRP-SO. To overcome the challenges of solving large-scale instances of the TDVRP-SO with a commercial MIP solver, we propose an Adaptive Large Neighborhood Search (ALNS) heuristic extended with a local search and a set partitioning model. The ALNS heuristic also includes solving the sub-problem of determining the optimal sailing speeds along each PSV route. Computational tests on instances based on a real planning case from the Norwegian continental shelf show that the ALNS heuristic efficiently provides high-quality solutions. It is also demonstrated that, in contrast to current planning practice, accounting for speed optimization and weather conditions significantly improves the solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助17采纳,获得10
刚刚
LL发布了新的文献求助10
刚刚
小二郎应助优秀的凉面采纳,获得10
刚刚
对潇潇暮雨完成签到 ,获得积分10
1秒前
赘婿应助Hiuge采纳,获得10
1秒前
1秒前
自觉的书蝶完成签到,获得积分10
1秒前
orixero应助干净秋寒采纳,获得10
1秒前
387完成签到,获得积分20
2秒前
修狗狗完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助中国大陆采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
SDLC完成签到,获得积分10
3秒前
大秦帝国完成签到,获得积分10
3秒前
stiger应助lune采纳,获得10
3秒前
健壮惋清发布了新的文献求助10
3秒前
关包子发布了新的文献求助10
4秒前
cd完成签到 ,获得积分10
4秒前
4秒前
www完成签到,获得积分10
5秒前
多情的友卉完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
故酒发布了新的文献求助100
6秒前
7秒前
远山完成签到,获得积分10
7秒前
7秒前
7秒前
牛马小刘完成签到 ,获得积分10
7秒前
FashionBoy应助饵丝拌辣酱采纳,获得10
7秒前
Orange应助11di采纳,获得10
8秒前
善学以致用应助光亮妙之采纳,获得10
8秒前
8秒前
橘子汽水完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670