亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis

人工智能 计算机科学 无线电技术 图像(数学) 深度学习 计算机断层摄影术 计算机视觉 放射科 医学物理学 医学
作者
Zeyu Zhang,Mi Huang,Zhuoran Jiang,Yushi Chang,Ke Lü,F Yin,Phuoc Tran,Dapeng Wu,Chris Beltran,Lei Ren
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085003-085003 被引量:11
标识
DOI:10.1088/1361-6560/ac5f6e
摘要

Abstract Objective. 4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients. Approach. This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients’ data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated. Main results. Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function. Significance. This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利问玉完成签到 ,获得积分10
6秒前
轨迹应助ceeray23采纳,获得20
17秒前
量子星尘发布了新的文献求助10
45秒前
WebCasa完成签到,获得积分10
1分钟前
小蘑菇应助ceeray23采纳,获得20
2分钟前
脑洞疼应助ceeray23采纳,获得20
2分钟前
Joceelyn完成签到,获得积分10
2分钟前
leilei完成签到,获得积分20
2分钟前
子南归完成签到,获得积分10
2分钟前
传奇3应助ceeray23采纳,获得20
2分钟前
2分钟前
充电宝应助光能使者采纳,获得10
2分钟前
3分钟前
光能使者发布了新的文献求助10
3分钟前
深情安青应助复杂黑夜采纳,获得10
3分钟前
3分钟前
复杂黑夜发布了新的文献求助10
3分钟前
所所应助ceeray23采纳,获得20
3分钟前
Owen应助ceeray23采纳,获得20
3分钟前
nojego完成签到,获得积分10
3分钟前
4分钟前
充电宝应助ceeray23采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
4分钟前
xiaoyuan发布了新的文献求助10
5分钟前
Akim应助ceeray23采纳,获得20
5分钟前
willlee完成签到 ,获得积分10
5分钟前
5分钟前
敏敏9813完成签到,获得积分10
6分钟前
满天都是大萌德关注了科研通微信公众号
6分钟前
胖小羊完成签到 ,获得积分10
6分钟前
Ccccn完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
然463完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
李健应助ARESCI采纳,获得10
8分钟前
samsahpiyaz发布了新的文献求助10
9分钟前
犹豫翠萱完成签到 ,获得积分10
10分钟前
老迟到的羊完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584738
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771521
捐赠科研通 4613608
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467516