Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis

人工智能 计算机科学 无线电技术 图像(数学) 深度学习 计算机断层摄影术 计算机视觉 放射科 医学物理学 医学
作者
Zeyu Zhang,Mi Huang,Zhuoran Jiang,Yushi Chang,Ke Lü,F Yin,Phuoc Tran,Dapeng Wu,Chris Beltran,Lei Ren
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085003-085003 被引量:11
标识
DOI:10.1088/1361-6560/ac5f6e
摘要

Abstract Objective. 4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients. Approach. This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients’ data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated. Main results. Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function. Significance. This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉诗蕊举报懒羊羊求助涉嫌违规
2秒前
茗泠发布了新的文献求助10
2秒前
向往生活发布了新的文献求助10
2秒前
连鹰完成签到,获得积分10
3秒前
杰瑞发布了新的文献求助10
3秒前
笨笨人龙完成签到 ,获得积分10
3秒前
FashionBoy应助大宝君采纳,获得30
3秒前
亮亮发布了新的文献求助10
8秒前
杜本内完成签到,获得积分10
9秒前
9秒前
玄冰发布了新的文献求助20
10秒前
10秒前
阿童木完成签到,获得积分10
11秒前
江边鸟完成签到 ,获得积分10
13秒前
辛勤的博涛完成签到,获得积分10
13秒前
liu发布了新的文献求助10
14秒前
jin发布了新的文献求助10
15秒前
15秒前
顾矜应助CGN采纳,获得10
17秒前
Miku完成签到,获得积分10
17秒前
awxefc完成签到,获得积分10
18秒前
善学以致用应助笑点低靖采纳,获得10
19秒前
21秒前
pork0001完成签到,获得积分20
22秒前
Mia发布了新的文献求助10
22秒前
liu完成签到,获得积分10
23秒前
24秒前
kk发布了新的文献求助10
25秒前
pork0001发布了新的文献求助10
25秒前
25秒前
25秒前
乐乐应助大宝君采纳,获得30
26秒前
文森特的向日葵完成签到,获得积分10
27秒前
spc68应助追寻筮采纳,获得10
28秒前
蜗牛发布了新的文献求助10
29秒前
Jhowe发布了新的文献求助10
31秒前
懒羊羊发布了新的文献求助10
32秒前
32秒前
ddd完成签到 ,获得积分10
34秒前
8R完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528