Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis

人工智能 计算机科学 无线电技术 图像(数学) 深度学习 计算机断层摄影术 计算机视觉 放射科 医学物理学 医学
作者
Zeyu Zhang,Mi Huang,Zhuoran Jiang,Yushi Chang,Ke Lü,F Yin,Phuoc Tran,Dapeng Wu,Chris Beltran,Lei Ren
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085003-085003 被引量:11
标识
DOI:10.1088/1361-6560/ac5f6e
摘要

Abstract Objective. 4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients. Approach. This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients’ data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated. Main results. Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function. Significance. This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助哈皮采纳,获得10
1秒前
lin发布了新的文献求助10
3秒前
斯文败类应助呆萌幻竹采纳,获得10
4秒前
huster发布了新的文献求助10
4秒前
难过千易发布了新的文献求助10
4秒前
英俊的铭应助春天采纳,获得10
5秒前
念心发布了新的文献求助10
5秒前
6秒前
辛勤的花瓣完成签到 ,获得积分10
8秒前
diorzhang完成签到 ,获得积分10
9秒前
ying发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
sonic完成签到,获得积分10
11秒前
11秒前
huster完成签到,获得积分10
13秒前
13秒前
Hello应助迷路的问玉采纳,获得10
13秒前
隐形曼青应助少吃一口采纳,获得10
14秒前
lhc完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
naturehome发布了新的文献求助10
16秒前
春天发布了新的文献求助10
17秒前
halo完成签到,获得积分10
17秒前
哈皮发布了新的文献求助10
17秒前
852应助念心采纳,获得10
17秒前
18秒前
WHHW发布了新的文献求助10
19秒前
不买版权你出什么成果完成签到 ,获得积分10
20秒前
风信子deon01完成签到,获得积分10
20秒前
kiki发布了新的文献求助10
21秒前
甜甜如之完成签到,获得积分10
22秒前
细心的靖巧完成签到,获得积分10
23秒前
保护番茄完成签到,获得积分10
23秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070