Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis

人工智能 计算机科学 无线电技术 图像(数学) 深度学习 计算机断层摄影术 计算机视觉 放射科 医学物理学 医学
作者
Zeyu Zhang,Mi Huang,Zhuoran Jiang,Yushi Chang,Ke Lü,F Yin,Phuoc Tran,Dapeng Wu,Chris Beltran,Lei Ren
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085003-085003 被引量:11
标识
DOI:10.1088/1361-6560/ac5f6e
摘要

Abstract Objective. 4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients. Approach. This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients’ data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated. Main results. Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function. Significance. This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengfu完成签到,获得积分10
2秒前
平平无奇小天才完成签到 ,获得积分10
3秒前
3秒前
王双羊完成签到,获得积分10
3秒前
干冷安发布了新的文献求助10
3秒前
4秒前
Xiaoqiu发布了新的文献求助10
4秒前
小蘑菇应助fal采纳,获得10
5秒前
XIAONIE25完成签到,获得积分10
5秒前
李健的粉丝团团长应助lyn采纳,获得10
5秒前
5秒前
Natalie完成签到 ,获得积分10
5秒前
小刺完成签到 ,获得积分10
6秒前
luluyuan2010发布了新的文献求助10
7秒前
今后应助霖槿采纳,获得10
8秒前
8秒前
搜集达人应助qqq采纳,获得10
9秒前
WUUUU应助等待的士晋采纳,获得10
9秒前
甜甜凡蕾发布了新的文献求助10
9秒前
9秒前
清风徐来发布了新的文献求助10
10秒前
隐形曼青应助hhhhhhh采纳,获得10
11秒前
12秒前
13秒前
13秒前
muuuu完成签到,获得积分10
14秒前
16秒前
思源应助蛰伏的小宇宙采纳,获得10
16秒前
16秒前
小刺猬发布了新的文献求助10
16秒前
ding应助啦熊采纳,获得10
17秒前
18秒前
Conner发布了新的文献求助10
18秒前
干冷安完成签到,获得积分10
18秒前
AppleDog发布了新的文献求助10
18秒前
18秒前
Hollow发布了新的文献求助20
19秒前
刘雪松完成签到,获得积分10
19秒前
fal发布了新的文献求助10
20秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174316
求助须知:如何正确求助?哪些是违规求助? 2825549
关于积分的说明 7953081
捐赠科研通 2486512
什么是DOI,文献DOI怎么找? 1325288
科研通“疑难数据库(出版商)”最低求助积分说明 634409
版权声明 602734