GEIN: An interpretable benchmarking framework towards all building types based on machine learning

标杆管理 可解释性 机器学习 计算机科学 过度拟合 人工智能 能源消耗 水准点(测量) 集成学习 数据挖掘 工程类 人工神经网络 电气工程 业务 营销 地理 大地测量学
作者
Xiaoyu Jin,Fu Xiao,Chong Zhang,Ao Li
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:260: 111909-111909 被引量:16
标识
DOI:10.1016/j.enbuild.2022.111909
摘要

Building energy performance benchmarking is adopted by many countries in the world as an effective tool to reduce energy consumption at city or country level. Machine learning holds a lot of promise for quickly and correctly predicting energy consumption from massive data, thereby it’s suitable for large-scale performance assessment. However, there is a severe problem of data imbalance in building types in many datasets. Due to the lack of samples for some types of buildings, unfavorable results, such as low accuracy of prediction, are produced sometimes. Meanwhile, the poor interpretability of machine learning models makes it difficult to promote the benchmarking frameworks based on machine learning. Therefore, this study proposed a novel machine learning based building performance benchmarking framework with improved generalization and interpretability. A reliable and convenient data augmentation approach was established to overcome the data imbalance problem while avoiding the overfitting problem. Superior results were obtained in case studies using three city-level open-source building datasets from two different countries. A complete rating framework was also proposed, with proper explanations of results at sample level. The performance of this rating framework was verified by comparing with other data-driven benchmarking frameworks. Moreover, the importance of variables was quantified and ranked, which can be a significant reference for data collectors and publishers. The results demonstrated that data augmentation can effectively solve the problem of data imbalance, which enables the universality of machine learning based benchmarking on all types of buildings. And the proposed GEIN benchmarking framework can also effectively address the issues of interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
寒生完成签到,获得积分10
5秒前
8秒前
索多倍完成签到 ,获得积分10
8秒前
真实的咖啡完成签到,获得积分10
9秒前
12秒前
rxdeng完成签到,获得积分10
12秒前
双子土豆泥完成签到 ,获得积分10
16秒前
16秒前
18秒前
汤姆完成签到,获得积分10
20秒前
EnnoEven完成签到 ,获得积分10
21秒前
霍小美完成签到,获得积分10
22秒前
rxdeng发布了新的文献求助10
24秒前
24秒前
慕青应助louxiaohan采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
不动僧发布了新的文献求助30
28秒前
juliar完成签到 ,获得积分10
29秒前
Ava应助单忘幽采纳,获得10
29秒前
30秒前
xxx发布了新的文献求助10
33秒前
34秒前
35秒前
lijiauyi1994发布了新的文献求助10
36秒前
36秒前
蒲公英的半海完成签到,获得积分10
37秒前
37秒前
38秒前
青菜发布了新的文献求助10
39秒前
代代完成签到,获得积分10
39秒前
louxiaohan发布了新的文献求助10
40秒前
41秒前
42秒前
lala发布了新的文献求助20
44秒前
44秒前
凉凉应助代代采纳,获得10
45秒前
智圆行方完成签到,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499