亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GEIN: An interpretable benchmarking framework towards all building types based on machine learning

标杆管理 可解释性 机器学习 计算机科学 过度拟合 人工智能 能源消耗 水准点(测量) 集成学习 数据挖掘 工程类 人工神经网络 大地测量学 营销 地理 电气工程 业务
作者
Xiaoyu Jin,Fu Xiao,Chong Zhang,Ao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:260: 111909-111909 被引量:16
标识
DOI:10.1016/j.enbuild.2022.111909
摘要

Building energy performance benchmarking is adopted by many countries in the world as an effective tool to reduce energy consumption at city or country level. Machine learning holds a lot of promise for quickly and correctly predicting energy consumption from massive data, thereby it’s suitable for large-scale performance assessment. However, there is a severe problem of data imbalance in building types in many datasets. Due to the lack of samples for some types of buildings, unfavorable results, such as low accuracy of prediction, are produced sometimes. Meanwhile, the poor interpretability of machine learning models makes it difficult to promote the benchmarking frameworks based on machine learning. Therefore, this study proposed a novel machine learning based building performance benchmarking framework with improved generalization and interpretability. A reliable and convenient data augmentation approach was established to overcome the data imbalance problem while avoiding the overfitting problem. Superior results were obtained in case studies using three city-level open-source building datasets from two different countries. A complete rating framework was also proposed, with proper explanations of results at sample level. The performance of this rating framework was verified by comparing with other data-driven benchmarking frameworks. Moreover, the importance of variables was quantified and ranked, which can be a significant reference for data collectors and publishers. The results demonstrated that data augmentation can effectively solve the problem of data imbalance, which enables the universality of machine learning based benchmarking on all types of buildings. And the proposed GEIN benchmarking framework can also effectively address the issues of interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
39秒前
40秒前
hugeyoung发布了新的文献求助10
44秒前
49秒前
量子星尘发布了新的文献求助10
51秒前
汉堡包应助rebeycca采纳,获得10
52秒前
曾业辉发布了新的文献求助10
53秒前
SMG完成签到 ,获得积分10
55秒前
所所应助曾业辉采纳,获得10
1分钟前
云墨完成签到 ,获得积分10
1分钟前
1分钟前
sujinyu发布了新的文献求助80
1分钟前
zz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
申腾达发布了新的文献求助10
1分钟前
WWW发布了新的文献求助10
2分钟前
WWW完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
开拖拉机的芍药完成签到 ,获得积分10
2分钟前
ROMANTIC完成签到 ,获得积分10
2分钟前
2分钟前
Lucas应助开朗灵萱采纳,获得10
2分钟前
YUE66完成签到,获得积分10
2分钟前
2分钟前
开朗灵萱发布了新的文献求助10
2分钟前
情怀应助奋斗的马里奥采纳,获得10
2分钟前
传奇3应助开朗灵萱采纳,获得10
3分钟前
Richard完成签到,获得积分10
3分钟前
monica完成签到 ,获得积分10
3分钟前
Jessica完成签到,获得积分10
3分钟前
orixero应助飞常爱你哦采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
浮岫发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439