GEIN: An interpretable benchmarking framework towards all building types based on machine learning

标杆管理 可解释性 机器学习 计算机科学 过度拟合 人工智能 能源消耗 水准点(测量) 集成学习 数据挖掘 工程类 人工神经网络 电气工程 业务 营销 地理 大地测量学
作者
Xiaoyu Jin,Fu Xiao,Chong Zhang,Ao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:260: 111909-111909 被引量:16
标识
DOI:10.1016/j.enbuild.2022.111909
摘要

Building energy performance benchmarking is adopted by many countries in the world as an effective tool to reduce energy consumption at city or country level. Machine learning holds a lot of promise for quickly and correctly predicting energy consumption from massive data, thereby it’s suitable for large-scale performance assessment. However, there is a severe problem of data imbalance in building types in many datasets. Due to the lack of samples for some types of buildings, unfavorable results, such as low accuracy of prediction, are produced sometimes. Meanwhile, the poor interpretability of machine learning models makes it difficult to promote the benchmarking frameworks based on machine learning. Therefore, this study proposed a novel machine learning based building performance benchmarking framework with improved generalization and interpretability. A reliable and convenient data augmentation approach was established to overcome the data imbalance problem while avoiding the overfitting problem. Superior results were obtained in case studies using three city-level open-source building datasets from two different countries. A complete rating framework was also proposed, with proper explanations of results at sample level. The performance of this rating framework was verified by comparing with other data-driven benchmarking frameworks. Moreover, the importance of variables was quantified and ranked, which can be a significant reference for data collectors and publishers. The results demonstrated that data augmentation can effectively solve the problem of data imbalance, which enables the universality of machine learning based benchmarking on all types of buildings. And the proposed GEIN benchmarking framework can also effectively address the issues of interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
tingting发布了新的文献求助10
6秒前
秋雅发布了新的文献求助10
7秒前
9秒前
深情安青应助俊逸的刺猬采纳,获得30
11秒前
大模型应助Christina采纳,获得10
12秒前
14秒前
早睡早起健康长寿完成签到,获得积分10
15秒前
冷静剑成完成签到,获得积分10
15秒前
东方天奇发布了新的文献求助10
16秒前
怕孤单的Hannah完成签到 ,获得积分10
17秒前
苗老九完成签到,获得积分10
18秒前
善学以致用应助里海怪物采纳,获得10
18秒前
不可以再驼背完成签到,获得积分10
19秒前
20秒前
叁金完成签到,获得积分10
20秒前
21秒前
22秒前
25秒前
Frisk12sfs发布了新的文献求助10
25秒前
袁青欣完成签到 ,获得积分10
25秒前
爱做实验的泡利完成签到,获得积分10
27秒前
慕青应助Frisk12sfs采纳,获得10
31秒前
眼睛大的一斩完成签到,获得积分20
32秒前
34秒前
城南完成签到 ,获得积分10
35秒前
zhenghongdan发布了新的文献求助10
35秒前
35秒前
宇文雅琴完成签到,获得积分10
35秒前
Orange应助sam采纳,获得30
36秒前
39秒前
40秒前
Jasper应助Jiaxiao采纳,获得10
41秒前
小张z完成签到,获得积分10
43秒前
44秒前
zhenghongdan完成签到,获得积分20
45秒前
光纤陀螺完成签到 ,获得积分10
46秒前
墨竹发布了新的文献求助10
46秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194