Digital Twin-driven approach to improving energy efficiency of indoor lighting based on computer vision and dynamic BIM

计算机科学 实时计算 智能照明 钥匙(锁) 能源消耗 帧速率 智能化 帧(网络) 模拟 人工智能 工程类 计算机网络 计算机安全 建筑工程 心理学 电气工程 心理治疗师
作者
Yi Tan,Penglu Chen,Wenchi Shou,Abdul-Manan Sadick
出处
期刊:Energy and Buildings [Elsevier]
卷期号:270: 112271-112271 被引量:44
标识
DOI:10.1016/j.enbuild.2022.112271
摘要

Intelligent lighting systems and surveillance systems have become an important part of intelligent buildings. However, the current intelligent lighting system generally adopts independent sensor control and does not perform multi-source heterogeneous data fusion with other digital systems. This paper fully considers the linkage between the lighting system and the surveillance system and proposes a digital twin lighting (DTL) system that mainly consists of three parts. Firstly, a visualized operation and maintenance (VO&M) platform for a DTL system was established based on dynamic BIM. Secondly, the environment perception, key-frame similarity judgment, and multi-channel key-frame cut and merge mechanism were utilized to preprocess the video stream of the surveillance system in real-time. Lastly, pedestrians detected using YOLOv4 and the ambient brightness perceived by the environment perception mechanism were transmitted to the cloud database and were continuously read by the VO&M platform. The intent here was to aid timely adaptive adjustment of the digital twin and realistic lighting through the internet. The effectiveness of the proposed method was verified by experimenting with a surveillance video stream for 14 days. The key results of the experiments are as follows: (1) the accuracy rate of intelligent decision control reached 95.15%; (2) energy consumption and electricity costs were reduced by approximately 79%; and (3) the hardware cost and energy consumption of detection equipment and the time and cost of operation and maintenance (O&M) were greatly reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐发布了新的文献求助10
刚刚
ZZZ发布了新的文献求助10
1秒前
懵懂的子骞完成签到 ,获得积分10
2秒前
mammoth发布了新的文献求助40
2秒前
2秒前
英俊的铭应助Chang采纳,获得10
3秒前
3秒前
3秒前
kk子完成签到,获得积分10
4秒前
夏橪发布了新的文献求助10
4秒前
JamesPei应助lunan采纳,获得10
5秒前
传奇3应助qing采纳,获得10
5秒前
卫尔摩斯完成签到,获得积分10
6秒前
6秒前
6秒前
沉默牛排发布了新的文献求助10
6秒前
科研通AI5应助独特微笑采纳,获得10
6秒前
7秒前
7秒前
碧玉墨绿完成签到,获得积分10
7秒前
xiaoma完成签到,获得积分10
7秒前
8秒前
潇洒的擎苍完成签到,获得积分10
8秒前
刘晓纳发布了新的文献求助10
8秒前
晴子发布了新的文献求助10
8秒前
洛鸢发布了新的文献求助10
9秒前
立马毕业完成签到,获得积分10
9秒前
卫尔摩斯发布了新的文献求助10
9秒前
BINBIN完成签到 ,获得积分10
9秒前
hfgeyt完成签到,获得积分10
10秒前
sakurai应助背后的诺言采纳,获得10
10秒前
湘华发布了新的文献求助10
11秒前
Jenny应助lan采纳,获得10
11秒前
单薄的飞松完成签到 ,获得积分10
11秒前
醒醒发布了新的文献求助10
11秒前
12秒前
恨安完成签到,获得积分10
12秒前
jijahui发布了新的文献求助30
12秒前
南瓜咸杏发布了新的文献求助30
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762