Unified dual-label semi-supervised learning with top-k feature selection

计算机科学 特征选择 人工智能 机器学习 特征(语言学) 标记数据 半监督学习 模式识别(心理学) 约束(计算机辅助设计) 对偶(语法数字) 规范(哲学) 数学 艺术 哲学 语言学 文学类 几何学 政治学 法学
作者
Han Zhang,Maoguo Gong,Feiping Nie,Xuelong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:501: 875-888 被引量:5
标识
DOI:10.1016/j.neucom.2022.05.090
摘要

Semi-supervised feature selection alleviates the annotation burden of supervised feature learning by exploiting data under a handful of supervision information. The mainstream technique is to employ a linear regression framework that jointly learns labeled and unlabeled samples. However, existing approaches always encounter the deficiencies in two aspects: 1) the performance of models are severely degenerated once predicted labels are unreliable; 2) the balance of objectives in regards to two types of data are not well considered. In the article, we propose unified dual-label semi-supervised learning for top-k feature selection. The technique defines a soft label matrix to indicate the probability of samples belonging to each class. From the probability, the model could recognize unclassifiable samples that lay around the boundaries. Meanwhile, the label matrix is equipped with an exponent parameter γ. It endows the soft labels dual effects that the labeled and unlabeled data are tactfully discriminated. For the purpose of feature selection, we impose the ℓ2,0-norm constraint on the projection matrix, such that the exact top-k features are picked out. An iteration algorithm is designed to solve the given problem, by which large-scale data are facilely tackled. We conduct experiments that validate the superiority of the proposed method against the state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的绿兰完成签到,获得积分10
刚刚
多多少少忖测的情完成签到,获得积分10
刚刚
科研通AI5应助兴奋的宛白采纳,获得10
1秒前
2秒前
zhanlonglsj发布了新的文献求助10
2秒前
2秒前
芍药完成签到,获得积分10
2秒前
Yogita完成签到,获得积分10
3秒前
DoctorYan完成签到,获得积分10
3秒前
Adler完成签到,获得积分10
3秒前
4秒前
坐宝马吃地瓜完成签到 ,获得积分10
4秒前
SciGPT应助Strike采纳,获得10
4秒前
自强不息完成签到,获得积分10
4秒前
5秒前
czq发布了新的文献求助30
5秒前
望春风完成签到,获得积分10
5秒前
5秒前
huangJP完成签到,获得积分10
6秒前
情怀应助Tira采纳,获得10
6秒前
王阳洋完成签到,获得积分10
6秒前
6秒前
7秒前
通~发布了新的文献求助10
7秒前
李爱国应助非常可爱采纳,获得20
7秒前
7秒前
8秒前
阿敏发布了新的文献求助10
9秒前
JamesPei应助小憩采纳,获得10
9秒前
jkhjkhj发布了新的文献求助10
9秒前
风中香之发布了新的文献求助30
9秒前
忍冬完成签到,获得积分10
10秒前
Zhong发布了新的文献求助10
11秒前
胡图图关注了科研通微信公众号
11秒前
爱吃泡芙发布了新的文献求助20
11秒前
xiuxiu_27发布了新的文献求助10
11秒前
小书包完成签到,获得积分10
12秒前
xxx发布了新的文献求助10
12秒前
直率的钢铁侠完成签到,获得积分10
12秒前
大模型应助Elaine采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740