Unified dual-label semi-supervised learning with top-k feature selection

计算机科学 特征选择 人工智能 机器学习 特征(语言学) 标记数据 半监督学习 模式识别(心理学) 约束(计算机辅助设计) 对偶(语法数字) 规范(哲学) 数学 艺术 法学 几何学 哲学 文学类 语言学 政治学
作者
Han Zhang,Maoguo Gong,Feiping Nie,Xuelong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:501: 875-888 被引量:5
标识
DOI:10.1016/j.neucom.2022.05.090
摘要

Semi-supervised feature selection alleviates the annotation burden of supervised feature learning by exploiting data under a handful of supervision information. The mainstream technique is to employ a linear regression framework that jointly learns labeled and unlabeled samples. However, existing approaches always encounter the deficiencies in two aspects: 1) the performance of models are severely degenerated once predicted labels are unreliable; 2) the balance of objectives in regards to two types of data are not well considered. In the article, we propose unified dual-label semi-supervised learning for top-k feature selection. The technique defines a soft label matrix to indicate the probability of samples belonging to each class. From the probability, the model could recognize unclassifiable samples that lay around the boundaries. Meanwhile, the label matrix is equipped with an exponent parameter γ. It endows the soft labels dual effects that the labeled and unlabeled data are tactfully discriminated. For the purpose of feature selection, we impose the ℓ2,0-norm constraint on the projection matrix, such that the exact top-k features are picked out. An iteration algorithm is designed to solve the given problem, by which large-scale data are facilely tackled. We conduct experiments that validate the superiority of the proposed method against the state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余同学发布了新的文献求助10
1秒前
无处不在完成签到 ,获得积分10
2秒前
anan应助平常的如风采纳,获得10
2秒前
Puffkten发布了新的文献求助10
2秒前
大个应助海盐气泡水采纳,获得10
3秒前
3秒前
3秒前
龙妍琳完成签到,获得积分10
3秒前
3秒前
ame关闭了ame文献求助
4秒前
goldNAN发布了新的文献求助10
4秒前
Unlung发布了新的文献求助10
4秒前
我是老大应助适可而止采纳,获得10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
雪山飞发布了新的文献求助100
4秒前
4秒前
4秒前
FashionBoy应助尼i采纳,获得10
4秒前
秀秀应助科研通管家采纳,获得10
4秒前
HeAuBook应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
BioZheng应助科研通管家采纳,获得10
5秒前
BioZheng应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得100
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
等待吐司应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007