清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art

计算机科学 支持向量机 脑-机接口 二元分类 标准化 人工智能 重复性 卷积神经网络 运动表象 航程(航空) 机器学习 模式识别(心理学) 脑电图 统计 数学 心理学 精神科 操作系统 材料科学 复合材料
作者
Pasquale Arpaïa,Antonio Espósito,Angela Natalizio,Marco Parvis
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (3): 031002-031002 被引量:20
标识
DOI:10.1088/1741-2552/ac74e0
摘要

Objective.Processing strategies are analyzed with respect to the classification of electroencephalographic signals related to brain-computer interfaces (BCIs) based on motor imagery (MI). A review of literature is carried out to understand the achievements in MI classification, the most promising trends, and the challenges in replicating these results. Main focus is placed on performance by means of a rigorous metrological analysis carried out in compliance with the international vocabulary of metrology. Hence, classification accuracy and its uncertainty are considered, as well as repeatability and reproducibility.Approach.The paper works included in the review concern the classification of electroencephalographic signals in motor-imagery-based BCIs. Article search was carried out in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses standard and 89 studies were included.Main results.Statistically-based analyses show that brain-inspired approaches are increasingly proposed, and that these are particularly successful in discriminating against multiple classes. Notably, many proposals involve convolutional neural networks. Instead, classical machine learning approaches are still effective for binary classifications. Many proposals combine common spatial pattern, least absolute shrinkage and selection operator, and support vector machines. Regarding reported classification accuracies, performance above the upper quartile is in the 85%-100% range for the binary case and in the 83%-93% range for multi-class one. Associated uncertainties are up to 6% while repeatability for a predetermined dataset is up to 8%. Reproducibility assessment was instead prevented by lack of standardization in experiments.Significance.By relying on the analyzed studies, the reader is guided towards the development of a successful processing strategy as a crucial part of a BCI. Moreover, it is suggested that future studies should extend these approaches on data from more subjects and with custom experiments, even by investigating online operation. This would also enable the quantification of the results reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈小青完成签到 ,获得积分10
9秒前
12秒前
12秒前
coolplex完成签到 ,获得积分10
23秒前
51秒前
55秒前
1分钟前
加湿器发布了新的文献求助20
1分钟前
阿童木发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
FloppyWow完成签到 ,获得积分10
1分钟前
耿宇航完成签到 ,获得积分10
1分钟前
1分钟前
George完成签到 ,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
Arthur完成签到,获得积分10
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
肆肆完成签到,获得积分10
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
科研通AI2S应助mashibeo采纳,获得30
2分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
zzhui完成签到,获得积分10
2分钟前
丰富的归尘完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
111完成签到 ,获得积分10
3分钟前
3分钟前
DMA50完成签到 ,获得积分10
3分钟前
3分钟前
新奇完成签到 ,获得积分10
3分钟前
little完成签到,获得积分10
3分钟前
little发布了新的文献求助30
3分钟前
3分钟前
洸彦完成签到 ,获得积分10
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
瓦罐完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067359
捐赠科研通 2750158
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913