How to observe the principle of concurrent control in an arm‐based meta‐analysis using SAS procedures GLIMMIX and BGLIMM

频数推理 计算机科学 对比度(视觉) 荟萃分析 推论 差异(会计) 贝叶斯概率 网络分析 机器学习
作者
Hans-Peter Piepho,Laurence V. Madden
出处
期刊:Research Synthesis Methods [Wiley]
标识
DOI:10.1002/jrsm.1576
摘要

Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One advantage of this approach is that all inference is protected by within-study randomization. By contrast, arm-based analyses have been criticized in the past because they may also recover inter-study information when studies are modeled as random, which is the dominant practice, hence violating the principle of concurrent control, requiring treated individuals to only be compared directly with randomized controls. This issue arises regardless of whether analysis is implemented within a frequentist or a Bayesian framework. Here, we argue that recovery of inter-study information can be prevented in an arm-based analysis by adding a fixed study main effect. This simple device means that it is possible to honor the principle of concurrent control in a two-way analysis-of-variance approach that is very easy to implement using generalized linear mixed model procedures and hence may be particularly welcome to those not well versed in the more intricate coding required for a contrast-based analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Francis发布了新的文献求助10
1秒前
MMMy完成签到,获得积分10
2秒前
烟花应助lalala采纳,获得30
2秒前
YTT完成签到,获得积分10
2秒前
3秒前
4秒前
Lucas应助1234采纳,获得10
4秒前
5秒前
11发布了新的文献求助10
6秒前
nenoaowu发布了新的文献求助10
6秒前
dudu发布了新的文献求助10
6秒前
慕容尔曼完成签到,获得积分10
6秒前
何1发布了新的文献求助10
7秒前
医学生发布了新的文献求助10
8秒前
萌神_HUGO完成签到,获得积分10
9秒前
guoguo完成签到,获得积分10
10秒前
CipherSage应助XiaoDai采纳,获得10
10秒前
11秒前
烟花应助坚强的严青采纳,获得30
11秒前
bkagyin应助Chickentui采纳,获得10
11秒前
逆行的路人完成签到,获得积分10
12秒前
12秒前
genomed应助阿文采纳,获得10
13秒前
萌神_HUGO发布了新的文献求助30
14秒前
浣熊小呆完成签到,获得积分10
14秒前
15秒前
纯牛奶发布了新的文献求助10
16秒前
天下无敌丑娃娃完成签到,获得积分10
17秒前
afree发布了新的文献求助10
17秒前
辛勤访文发布了新的文献求助10
17秒前
橘子发布了新的文献求助10
20秒前
特梅头完成签到,获得积分10
21秒前
萧水白应助何1采纳,获得10
21秒前
dudu完成签到,获得积分20
21秒前
积极慕梅应助nenoaowu采纳,获得20
22秒前
22秒前
顾矜应助科研通管家采纳,获得10
23秒前
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146215
求助须知:如何正确求助?哪些是违规求助? 2797572
关于积分的说明 7824769
捐赠科研通 2453955
什么是DOI,文献DOI怎么找? 1305932
科研通“疑难数据库(出版商)”最低求助积分说明 627616
版权声明 601503