Survival Prediction After Neurosurgical Resection of Brain Metastases: A Machine Learning Approach

医学 逻辑回归 机器学习 危险分层 放射治疗 生存分析 人工智能 校准 切除术 外科 内科学 统计 计算机科学 数学
作者
Alexander F. C. Hulsbergen,Yu-Lung Lo,Ilia Awakimjan,Vasileios K. Kavouridis,John A. Phillips,Timothy W. Smith,Joost J.C. Verhoeff,Kun-Hsing Yu,Marike L. D. Broekman,Omar Arnaout
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:91 (3): 381-388
标识
DOI:10.1227/neu.0000000000002037
摘要

Current prognostic models for brain metastases (BMs) have been constructed and validated almost entirely with data from patients receiving up-front radiotherapy, leaving uncertainty about surgical patients.To build and validate a model predicting 6-month survival after BM resection using different machine learning algorithms.An institutional database of 1062 patients who underwent resection for BM was split into an 80:20 training and testing set. Seven different machine learning algorithms were trained and assessed for performance; an established prognostic model for patients with BM undergoing radiotherapy, the diagnosis-specific graded prognostic assessment, was also evaluated. Model performance was assessed using area under the curve (AUC) and calibration.The logistic regression showed the best performance with an AUC of 0.71 in the hold-out test set, a calibration slope of 0.76, and a calibration intercept of 0.03. The diagnosis-specific graded prognostic assessment had an AUC of 0.66. Patients were stratified into regular-risk, high-risk and very high-risk groups for death at 6 months; these strata strongly predicted both 6-month and longitudinal overall survival ( P < .0005). The model was implemented into a web application that can be accessed through http://brainmets.morethanml.com .We developed and internally validated a prediction model that accurately predicts 6-month survival after neurosurgical resection for BM and allows for meaningful risk stratification. Future efforts should focus on external validation of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anan发布了新的文献求助10
刚刚
江柚白完成签到,获得积分10
1秒前
1秒前
李健应助饱满绮波采纳,获得10
2秒前
wipmzxu完成签到,获得积分10
3秒前
Aira完成签到,获得积分10
4秒前
5秒前
6秒前
传奇3应助高挑的若雁采纳,获得10
6秒前
6秒前
上官若男应助Anna采纳,获得10
6秒前
LYB吕发布了新的文献求助10
7秒前
充电宝应助tao采纳,获得10
8秒前
买了束花完成签到,获得积分10
8秒前
史努比发布了新的文献求助10
10秒前
12秒前
LYB吕完成签到,获得积分20
13秒前
何hehe完成签到 ,获得积分10
15秒前
15秒前
直率的不评应助文光采纳,获得10
15秒前
16秒前
16秒前
波仔发布了新的文献求助10
16秒前
jinboy发布了新的文献求助10
17秒前
ureil发布了新的文献求助10
17秒前
被动科研完成签到,获得积分10
18秒前
19秒前
西海岸的风完成签到 ,获得积分10
19秒前
mushanes发布了新的文献求助10
22秒前
anan完成签到 ,获得积分10
22秒前
桔梗发布了新的文献求助10
24秒前
笨笨盼易完成签到,获得积分20
24秒前
24秒前
大个应助迪迦奥特曼采纳,获得10
26秒前
小二郎应助三三得九采纳,获得10
28秒前
29秒前
29秒前
29秒前
科研小锄头完成签到,获得积分10
29秒前
hehedala完成签到,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046