A unified probabilistic framework of robust and efficient color consistency correction for multiple images

人工智能 稳健性(进化) 计算机科学 概率逻辑 一致性(知识库) 模式识别(心理学) 计算机视觉 生物化学 基因 化学
作者
Yinxuan Li,Hongche Yin,Jian Yao,Hanyun Wang,Li Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 1-24 被引量:11
标识
DOI:10.1016/j.isprsjprs.2022.05.009
摘要

The task of color consistency correction for multiple images mainly arises from applications like orthoimage producing, panoramic image stitching and 3D reconstruction. In these applications, images usually have been geometrically aligned. So correspondences can be easily extracted and used to solve color correction models. Almost all previous methods assume that the color residuals of correspondences follow Gaussian distribution and solve color models based on least squares. However, correspondences often contain unreliable ones due to altered areas and misalignments, which results in unusual large color residuals, namely, outliers. Imposing color consistency constaints on unreliable correspondences significantly affects the performance of color correction since Gaussian is highly sensitive to outliers. In this paper, to solve this problem theoretically, we first propose a unified probabilistic framework that formulates global color correction as a maximum posteriori probability (MAP) estimation. It is flexible enough to allow for any assumptions of residual distribution. And most color correction methods can be explained in this unified framework. Then, to robust against outliers, we use t-distribution with heavier tails than Gaussian to fit the color residuals. It is more robust because higher probabilities can be assigned to outliers. We show that the MAP formulation based on t-distribution actually leads to weighted least squares, which downweights outliers adaptively. Besides, our framework requires no user-defined robustness parameter. Because all parameters of color models and t-distribution are optimized jointly. In addition, to decrease the huge computational cost of large scale dataset, we extend the proposed framework to a parallel vesion which can achieve efficiency and global optimal at the same time. In the experiments, we compare our approach with the state-of-the-art approaches of Shen et al., Xia et al., etc. on several challenging datasets with outliers. The results demonstrate that our approach achieves the best robustness (average color consistency scores CD=5.4, DeltaE2000=5.7 and PSNR=24.0) and the best efficiency (given 100 images, non-parallel/parallel runs more than 5/50 times faster than others). The implementation is available at https://github.com/yinxuanLi/ColorConsistencyCorrectionForMultipleImages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮元珊完成签到 ,获得积分10
1秒前
然而。完成签到 ,获得积分10
2秒前
nicky完成签到 ,获得积分10
4秒前
lzp完成签到 ,获得积分10
5秒前
ZSHAN完成签到,获得积分10
6秒前
背后的白山完成签到,获得积分10
7秒前
vidgers完成签到 ,获得积分10
8秒前
CLTTTt完成签到,获得积分10
9秒前
共享精神应助Sunny采纳,获得10
12秒前
晚晚完成签到,获得积分10
13秒前
妍宝贝完成签到 ,获得积分10
14秒前
柯伊达完成签到 ,获得积分10
14秒前
19秒前
李琛璐完成签到 ,获得积分10
24秒前
研友_GZ3zRn完成签到 ,获得积分0
26秒前
舒适映寒完成签到,获得积分10
27秒前
28秒前
31秒前
闻屿完成签到,获得积分10
31秒前
jixuchance完成签到,获得积分10
33秒前
Fanfan完成签到 ,获得积分10
33秒前
Sunny发布了新的文献求助10
34秒前
小yi又困啦完成签到 ,获得积分10
36秒前
虚幻的安容完成签到 ,获得积分20
39秒前
史克珍香完成签到 ,获得积分10
43秒前
虚幻的安容关注了科研通微信公众号
43秒前
机灵哲瀚完成签到,获得积分10
44秒前
从心随缘完成签到 ,获得积分10
44秒前
Joseph_LIN完成签到,获得积分10
45秒前
满意尔安完成签到,获得积分0
49秒前
Rachel完成签到,获得积分10
49秒前
奥雷里亚诺完成签到 ,获得积分10
50秒前
小事完成签到 ,获得积分10
50秒前
旧雨新知完成签到 ,获得积分10
53秒前
开心的人杰完成签到,获得积分10
54秒前
54秒前
跳跃太清完成签到 ,获得积分10
55秒前
龙箫羽笛完成签到 ,获得积分10
57秒前
58秒前
zhonghang2024发布了新的文献求助30
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725464
求助须知:如何正确求助?哪些是违规求助? 3270406
关于积分的说明 9965712
捐赠科研通 2985386
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261