Fluorescence imaging of FEN1 activity in living cells based on controlled-release of fluorescence probe from mesoporous silica nanoparticles

荧光 罗丹明6G 适体 介孔二氧化硅 生物物理学 检出限 纳米颗粒 化学 胶体金 DNA 荧光寿命成像显微镜 生物传感器 纳米技术 溶解 材料科学 介孔材料 分子生物学 生物化学 色谱法 生物 催化作用 物理 量子力学
作者
Yanhua Tang,Duoduo Zhang,Lu Ye,Songqin Liu,Juan Zhang,Yuepu Pu,Wei Wei
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:214: 114529-114529 被引量:19
标识
DOI:10.1016/j.bios.2022.114529
摘要

Flap endonuclease 1 (FEN1) is a structure-specific nuclease, which catalyzes the removal of 5' overhanging DNA flap from a specific DNA structure. FEN1 has been considered as an important biomarker for cancer diagnosis since it is over-expressed in various types of human tumor cells and closely related to cancer development. Nanoprobes gradually become basic tools for analyzing biomarkers variations in vivo. Here, we utilized aminoated mesoporous silica nanoparticles (NH2-MSNs) with a rich porous structure as the fluorescence nanoprobes to entrap the rhodamine 6G (Rh6G) molecules. Then gold nanoparticles linked specific single-stranded DNA (AuNPs-ssDNA) as a molecular gate was used to coat the NH2-MSNs surface. The fluorescence signal was weak when the fluorescence molecules were blocked by the AuNPs-ssDNA. In the presence of FEN1, it recognized and cleaved the specific ssDNA to release the Rh6G from NH2-MSNs, which resulted in recovered fluorescence signals. Thus, the sensitive detection of FEN1 activity was realized by controlled-release of Rh6G. The fluorescence signal showed a good linear relationship with the logarithm of FEN1 activity ranging from 0.05 to 1.75 U with a detection limit of 0.03 U. Moreover, confocal imaging demonstrated that the proposed biosensor could distinguish tumor cells from normal cells. Therefore, this technique contributes to clinical diagnostic and therapeutic monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助mgg采纳,获得10
1秒前
2秒前
4秒前
yy应助云哈哈采纳,获得10
5秒前
guoguosky完成签到 ,获得积分10
6秒前
6秒前
jump发布了新的文献求助10
6秒前
yy应助监理zhou采纳,获得10
7秒前
8秒前
科研小白完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
11秒前
yaya发布了新的文献求助10
13秒前
13秒前
stinkyfish发布了新的文献求助10
13秒前
Yan发布了新的文献求助10
13秒前
YK完成签到,获得积分10
13秒前
思源应助呵呵采纳,获得10
15秒前
动听若灵发布了新的文献求助10
15秒前
zhukeqinag发布了新的文献求助10
15秒前
16秒前
包容书竹发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI5应助谢育龙采纳,获得10
19秒前
19秒前
Eazin完成签到,获得积分10
20秒前
科研小白发布了新的文献求助10
21秒前
云鲲完成签到,获得积分10
22秒前
动听若灵完成签到,获得积分10
23秒前
华仔应助lili采纳,获得10
23秒前
11111发布了新的文献求助10
23秒前
领导范儿应助明明采纳,获得10
23秒前
zhukeqinag完成签到,获得积分10
24秒前
在水一方应助stinkyfish采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442