亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of mechanical properties of ZL702A based on neural network and regression analysis

材料科学 人工神经网络 回归分析 微观结构 预测建模 回归 降水 合金 线性回归 统计 冶金 机器学习 计算机科学 数学 物理 气象学
作者
Dongwei Li,Wei-Qing Huang,Jinxiang Liu,Kang-jie Yan,Xiaobo Zhang
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103679-103679
标识
DOI:10.1016/j.mtcomm.2022.103679
摘要

The quantile regression neural network (QRNN) has shown high potential for predicting the mechanical properties of the alloy. The QRNN model and the regression model were developed to predict the mechanical properties of the low-pressure cast aluminum alloy ZL702A using the mechanical properties, the temperature, and the microstructure data, and the prediction accuracies of the two prediction models were compared in this article. The regression model predicted better for the screened data, while the QRNN model predicted better for the unscreened data. Finally, the evolution characteristics of the microstructure with temperature are analyzed, and it is found that the changes of SDAS and composition with temperature are the main reasons for the changes of material properties with temperature. After the analysis and comparison, it is determined that the QRNN model predicts the mechanical properties more concisely and accurately. • A QRNN model to predict the mechanical properties of ZL702A is established. • The prediction accuracy of regression model and neural network model are compared. • Temperature instead of precipitation phase to predict mechanical properties. • The high accuracy of the QRNN model based on the unselected data is proved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
雨城完成签到 ,获得积分10
25秒前
mrjohn完成签到,获得积分0
38秒前
49秒前
丘比特应助doublenine18采纳,获得30
53秒前
wwww威完成签到,获得积分10
1分钟前
YHF2发布了新的文献求助10
1分钟前
YHF2完成签到,获得积分10
1分钟前
1分钟前
doublenine18发布了新的文献求助30
1分钟前
1分钟前
李丹阳完成签到,获得积分10
2分钟前
Criminology34举报zz求助涉嫌违规
2分钟前
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI6应助风华正茂采纳,获得10
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
布吉岛呀完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
风华正茂发布了新的文献求助10
3分钟前
deng203完成签到,获得积分10
3分钟前
4分钟前
Bin_Liu完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
潘小嘎完成签到 ,获得积分10
4分钟前
sswy完成签到 ,获得积分10
4分钟前
5分钟前
神明完成签到 ,获得积分10
5分钟前
5分钟前
WW完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514