Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分割 支持向量机 深度学习
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,Saurav Mallik,Zhongming Zhao,U Rajendra Acharyae
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 797-814 被引量:4
标识
DOI:10.1016/j.bbe.2022.06.003
摘要

Advanced cervical screening via liquid-based cytology (LBC)/Pap smear is a highly efficient precancerous cell detection tool based on cell image analysis, in which cells are classified as normal/abnormal. This paper outlines the drawbacks by introducing a new framework for the accurate classification of cervical cells. The proposed methodology comprises three phases: segmentation, localization of nucleus, and classification. In the segmentation phase, we develop a hybrid system that incorporates two binary image patches obtained by a 19-layered convolutional neural network (ConvNet) model with an enhanced deep high dimensional dissimilarity translation (HDDT) based conspicuous segmentation. To get the relevant information from binary patched images, a technique called optimum semantic similarity selective search (OSS-SS) is proposed that returns the localized RGB patched image. A pre-trained ResNet-50 model is retrained using transfer learning on localized patched images in the classification phase. Following that, the selected features from the average pool and fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) approach. Finally, these combined features are fed into a multi-class weighted kernel extreme learning machine (WKELM) classifier via a sparse multicanonical correlation (SMCCA) method. Three datasets (SIPaKMed, CRIC, and Harlev) are used to evaluate the segmentation and classification task. The proposed approach obtained an accuracy of 99.12 %, specificity of 99.45 %, sensitivity of 99.25 % with an execution time 99.6248 on SIPaKMed. The experimental analysis indicate that our model is more effective than existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助慢慢漫漫采纳,获得10
刚刚
bkagyin应助矮小的海豚采纳,获得10
刚刚
刚刚
CodeCraft应助孤独的素采纳,获得10
刚刚
科目三应助123采纳,获得10
刚刚
silence完成签到,获得积分10
1秒前
111完成签到,获得积分10
2秒前
布丁完成签到,获得积分10
2秒前
晓先森完成签到,获得积分10
2秒前
名取周一完成签到,获得积分10
2秒前
2秒前
大方凌丝发布了新的文献求助10
2秒前
姜昕完成签到,获得积分10
2秒前
kkk发布了新的文献求助10
3秒前
为什么发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
chelsea完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
清欢渡完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
hhh完成签到,获得积分10
5秒前
舍予发布了新的文献求助50
5秒前
隐形曼青应助JoaquinH采纳,获得10
5秒前
charllar完成签到,获得积分10
6秒前
诚心雁凡发布了新的文献求助10
7秒前
小凯同学完成签到,获得积分10
7秒前
幻梦发布了新的文献求助10
7秒前
雯雯完成签到,获得积分10
8秒前
简单的惋庭完成签到 ,获得积分10
8秒前
慧慧完成签到,获得积分10
8秒前
s1kl发布了新的文献求助10
8秒前
9秒前
雪顶蛋糕完成签到 ,获得积分10
9秒前
LUCKY发布了新的文献求助50
9秒前
vera发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744