清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分割 支持向量机 深度学习
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,Saurav Mallik,Zhongming Zhao,U Rajendra Acharyae
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:42 (3): 797-814 被引量:4
标识
DOI:10.1016/j.bbe.2022.06.003
摘要

Advanced cervical screening via liquid-based cytology (LBC)/Pap smear is a highly efficient precancerous cell detection tool based on cell image analysis, in which cells are classified as normal/abnormal. This paper outlines the drawbacks by introducing a new framework for the accurate classification of cervical cells. The proposed methodology comprises three phases: segmentation, localization of nucleus, and classification. In the segmentation phase, we develop a hybrid system that incorporates two binary image patches obtained by a 19-layered convolutional neural network (ConvNet) model with an enhanced deep high dimensional dissimilarity translation (HDDT) based conspicuous segmentation. To get the relevant information from binary patched images, a technique called optimum semantic similarity selective search (OSS-SS) is proposed that returns the localized RGB patched image. A pre-trained ResNet-50 model is retrained using transfer learning on localized patched images in the classification phase. Following that, the selected features from the average pool and fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) approach. Finally, these combined features are fed into a multi-class weighted kernel extreme learning machine (WKELM) classifier via a sparse multicanonical correlation (SMCCA) method. Three datasets (SIPaKMed, CRIC, and Harlev) are used to evaluate the segmentation and classification task. The proposed approach obtained an accuracy of 99.12 %, specificity of 99.45 %, sensitivity of 99.25 % with an execution time 99.6248 on SIPaKMed. The experimental analysis indicate that our model is more effective than existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡国伦完成签到 ,获得积分10
4秒前
可爱的函函应助幸福大白采纳,获得10
16秒前
wayne完成签到 ,获得积分10
19秒前
净心完成签到 ,获得积分10
24秒前
幸福大白发布了新的文献求助10
30秒前
李爱国应助耍酷平凡采纳,获得10
48秒前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
JJ完成签到 ,获得积分0
1分钟前
复方黄桃干完成签到 ,获得积分10
2分钟前
末末完成签到 ,获得积分10
2分钟前
务实的奇迹完成签到 ,获得积分10
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
fogsea完成签到,获得积分0
3分钟前
紫熊发布了新的文献求助30
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
耍酷平凡发布了新的文献求助10
4分钟前
科研通AI2S应助紫熊采纳,获得10
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
4分钟前
荔枝发布了新的文献求助10
4分钟前
lph完成签到 ,获得积分10
4分钟前
王大橘完成签到 ,获得积分10
5分钟前
5分钟前
RLLLLLLL完成签到 ,获得积分10
5分钟前
星辰大海应助细心的语蓉采纳,获得30
5分钟前
5分钟前
细心的语蓉完成签到,获得积分10
5分钟前
www完成签到 ,获得积分10
5分钟前
乐观海云完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
李金文应助雪山飞龙采纳,获得10
5分钟前
creep2020完成签到,获得积分10
5分钟前
望向天空的鱼完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582769
求助须知:如何正确求助?哪些是违规求助? 4000377
关于积分的说明 12382416
捐赠科研通 3675453
什么是DOI,文献DOI怎么找? 2025860
邀请新用户注册赠送积分活动 1059526
科研通“疑难数据库(出版商)”最低求助积分说明 946207