Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分割 支持向量机 深度学习
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,Saurav Mallik,Zhongming Zhao,U Rajendra Acharyae
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 797-814 被引量:4
标识
DOI:10.1016/j.bbe.2022.06.003
摘要

Advanced cervical screening via liquid-based cytology (LBC)/Pap smear is a highly efficient precancerous cell detection tool based on cell image analysis, in which cells are classified as normal/abnormal. This paper outlines the drawbacks by introducing a new framework for the accurate classification of cervical cells. The proposed methodology comprises three phases: segmentation, localization of nucleus, and classification. In the segmentation phase, we develop a hybrid system that incorporates two binary image patches obtained by a 19-layered convolutional neural network (ConvNet) model with an enhanced deep high dimensional dissimilarity translation (HDDT) based conspicuous segmentation. To get the relevant information from binary patched images, a technique called optimum semantic similarity selective search (OSS-SS) is proposed that returns the localized RGB patched image. A pre-trained ResNet-50 model is retrained using transfer learning on localized patched images in the classification phase. Following that, the selected features from the average pool and fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) approach. Finally, these combined features are fed into a multi-class weighted kernel extreme learning machine (WKELM) classifier via a sparse multicanonical correlation (SMCCA) method. Three datasets (SIPaKMed, CRIC, and Harlev) are used to evaluate the segmentation and classification task. The proposed approach obtained an accuracy of 99.12 %, specificity of 99.45 %, sensitivity of 99.25 % with an execution time 99.6248 on SIPaKMed. The experimental analysis indicate that our model is more effective than existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叶液发布了新的文献求助10
1秒前
孙辰睿发布了新的文献求助10
1秒前
1秒前
林山相晚暮完成签到,获得积分10
1秒前
科研通AI5应助笨笨松采纳,获得10
2秒前
爆米花应助玥来玥好采纳,获得10
3秒前
bing完成签到,获得积分10
4秒前
4秒前
科研通AI5应助落后冬灵采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
wanghao婷完成签到,获得积分20
5秒前
ysxlybt2发布了新的文献求助30
5秒前
6秒前
skier完成签到,获得积分10
6秒前
俊秀的翼发布了新的文献求助10
6秒前
Lii完成签到 ,获得积分10
6秒前
脑洞疼应助lucifer0922采纳,获得10
6秒前
adorable完成签到,获得积分10
7秒前
7秒前
烟花应助科研猫采纳,获得10
8秒前
隐形曼青应助ww采纳,获得10
8秒前
8秒前
李爱国应助一千年以后采纳,获得10
8秒前
9秒前
kkkk发布了新的文献求助10
9秒前
小鱼完成签到,获得积分10
9秒前
含章完成签到,获得积分10
10秒前
麦田守望者完成签到,获得积分10
10秒前
skier发布了新的文献求助10
10秒前
清脆的夜云完成签到,获得积分10
10秒前
MXL完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
尉迟明风完成签到 ,获得积分10
12秒前
含章发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399