Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分割 支持向量机 深度学习
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,Saurav Mallik,Zhongming Zhao,U Rajendra Acharyae
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:42 (3): 797-814 被引量:4
标识
DOI:10.1016/j.bbe.2022.06.003
摘要

Advanced cervical screening via liquid-based cytology (LBC)/Pap smear is a highly efficient precancerous cell detection tool based on cell image analysis, in which cells are classified as normal/abnormal. This paper outlines the drawbacks by introducing a new framework for the accurate classification of cervical cells. The proposed methodology comprises three phases: segmentation, localization of nucleus, and classification. In the segmentation phase, we develop a hybrid system that incorporates two binary image patches obtained by a 19-layered convolutional neural network (ConvNet) model with an enhanced deep high dimensional dissimilarity translation (HDDT) based conspicuous segmentation. To get the relevant information from binary patched images, a technique called optimum semantic similarity selective search (OSS-SS) is proposed that returns the localized RGB patched image. A pre-trained ResNet-50 model is retrained using transfer learning on localized patched images in the classification phase. Following that, the selected features from the average pool and fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) approach. Finally, these combined features are fed into a multi-class weighted kernel extreme learning machine (WKELM) classifier via a sparse multicanonical correlation (SMCCA) method. Three datasets (SIPaKMed, CRIC, and Harlev) are used to evaluate the segmentation and classification task. The proposed approach obtained an accuracy of 99.12 %, specificity of 99.45 %, sensitivity of 99.25 % with an execution time 99.6248 on SIPaKMed. The experimental analysis indicate that our model is more effective than existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会有椛海吗完成签到,获得积分10
刚刚
1秒前
qhy123完成签到,获得积分20
1秒前
zw发布了新的文献求助10
3秒前
3秒前
4秒前
ShmilyLJQ应助CCS采纳,获得10
4秒前
4秒前
小吴发布了新的文献求助10
5秒前
5秒前
续欣宇完成签到 ,获得积分10
6秒前
9秒前
婷婷完成签到,获得积分10
9秒前
YIWENNN完成签到,获得积分10
11秒前
Pt完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
意面饭助发布了新的文献求助20
13秒前
喜悦的向珊完成签到,获得积分10
15秒前
15秒前
冬菊完成签到 ,获得积分10
16秒前
英俊的铭应助chx123采纳,获得10
16秒前
卞旭东完成签到,获得积分10
17秒前
夏夏发布了新的文献求助10
17秒前
刘柑橘完成签到,获得积分10
18秒前
wanci应助strong.quite采纳,获得10
19秒前
仙妮宝贝发布了新的文献求助10
19秒前
玛卡巴卡发布了新的文献求助10
19秒前
20秒前
虚心求学完成签到,获得积分10
20秒前
大可爱完成签到 ,获得积分10
20秒前
YP发布了新的文献求助10
21秒前
gjlt完成签到,获得积分20
23秒前
24秒前
24秒前
科研人完成签到,获得积分20
24秒前
端庄冬寒完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
小鱼儿发布了新的文献求助10
27秒前
英勇盛男发布了新的文献求助10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131159
求助须知:如何正确求助?哪些是违规求助? 4333201
关于积分的说明 13499617
捐赠科研通 4169958
什么是DOI,文献DOI怎么找? 2285998
邀请新用户注册赠送积分活动 1286947
关于科研通互助平台的介绍 1227864