Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分割 支持向量机 深度学习
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,Saurav Mallik,Zhongming Zhao,U Rajendra Acharyae
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 797-814 被引量:4
标识
DOI:10.1016/j.bbe.2022.06.003
摘要

Advanced cervical screening via liquid-based cytology (LBC)/Pap smear is a highly efficient precancerous cell detection tool based on cell image analysis, in which cells are classified as normal/abnormal. This paper outlines the drawbacks by introducing a new framework for the accurate classification of cervical cells. The proposed methodology comprises three phases: segmentation, localization of nucleus, and classification. In the segmentation phase, we develop a hybrid system that incorporates two binary image patches obtained by a 19-layered convolutional neural network (ConvNet) model with an enhanced deep high dimensional dissimilarity translation (HDDT) based conspicuous segmentation. To get the relevant information from binary patched images, a technique called optimum semantic similarity selective search (OSS-SS) is proposed that returns the localized RGB patched image. A pre-trained ResNet-50 model is retrained using transfer learning on localized patched images in the classification phase. Following that, the selected features from the average pool and fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) approach. Finally, these combined features are fed into a multi-class weighted kernel extreme learning machine (WKELM) classifier via a sparse multicanonical correlation (SMCCA) method. Three datasets (SIPaKMed, CRIC, and Harlev) are used to evaluate the segmentation and classification task. The proposed approach obtained an accuracy of 99.12 %, specificity of 99.45 %, sensitivity of 99.25 % with an execution time 99.6248 on SIPaKMed. The experimental analysis indicate that our model is more effective than existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
369138190应助金色晨光采纳,获得20
1秒前
Liua完成签到,获得积分10
1秒前
俏皮的老城完成签到 ,获得积分10
2秒前
好好好好好完成签到,获得积分10
2秒前
我爱科研完成签到,获得积分10
3秒前
奥丁蒂法完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
小李子发布了新的文献求助10
5秒前
小田发布了新的文献求助20
6秒前
7秒前
7秒前
灵巧映安发布了新的文献求助10
8秒前
8秒前
超级小飞侠完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
踏实威完成签到,获得积分10
9秒前
SciGPT应助zzaxx123采纳,获得10
10秒前
弄香发布了新的文献求助10
12秒前
欣慰的白羊完成签到,获得积分10
13秒前
fanhongpeng完成签到 ,获得积分10
13秒前
13秒前
14秒前
ermiao发布了新的文献求助10
14秒前
小李子完成签到,获得积分10
16秒前
JamesPei应助曙丽盼采纳,获得10
17秒前
无极微光应助隐形的若灵采纳,获得20
17秒前
打打应助种花家的狗狗采纳,获得10
17秒前
善学以致用应助TingtingGZ采纳,获得10
17秒前
Stroeve完成签到,获得积分10
18秒前
lzylzy完成签到,获得积分10
18秒前
19秒前
19秒前
zh完成签到,获得积分10
21秒前
lzylzy发布了新的文献求助10
22秒前
23秒前
李顺利给李顺利的求助进行了留言
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212