A computational framework to unify orthogonal information in DNA methylation and copy number aberrations in cell-free DNA for early cancer detection

DNA甲基化 计算生物学 生物 癌症 遗传学 亚硫酸氢盐测序 胎儿游离DNA DNA测序 DNA 基因 基因表达 胎儿 产前诊断 怀孕
作者
Qiang Wei,Chao Jin,Yan Wang,Shanshan Guo,Xu Guo,Xiaonan Liu,Jing An,Jinliang Xing,Bingshan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac200
摘要

Cell-free DNA (cfDNA) provides a convenient diagnosis avenue for noninvasive cancer detection. The current methods are focused on identifying circulating tumor DNA (ctDNA)s genomic aberrations, e.g. mutations, copy number aberrations (CNAs) or methylation changes. In this study, we report a new computational method that unifies two orthogonal pieces of information, namely methylation and CNAs, derived from whole-genome bisulfite sequencing (WGBS) data to quantify low tumor content in cfDNA. It implements a Bayes model to enrich ctDNA from WGBS data based on hypomethylation haplotypes, and subsequently, models CNAs for cancer detection. We generated WGBS data in a total of 262 samples, including high-depth (>20×, deduped high mapping quality reads) data in 76 samples with matched triplets (tumor, adjacent normal and cfDNA) and low-depth (~2.5×, deduped high mapping quality reads) data in 186 samples. We identified a total of 54 Mb regions of hypomethylation haplotypes for model building, a vast majority of which are not covered in the HumanMethylation450 arrays. We showed that our model is able to substantially enrich ctDNA reads (tens of folds), with clearly elevated CNAs that faithfully match the CNAs in the paired tumor samples. In the 19 hepatocellular carcinoma cfDNA samples, the estimated enrichment is as high as 16 fold, and in the simulation data, it can achieve over 30-fold enrichment for a ctDNA level of 0.5% with a sequencing depth of 600×. We also found that these hypomethylation regions are also shared among many cancer types, thus demonstrating the potential of our framework for pancancer early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangn完成签到,获得积分10
刚刚
1秒前
周老八发布了新的文献求助10
1秒前
1秒前
韭菜完成签到,获得积分10
2秒前
季宇发布了新的文献求助10
2秒前
英俊的铭应助屁王采纳,获得10
2秒前
义气绿柳完成签到,获得积分10
2秒前
守望阳光1完成签到,获得积分10
3秒前
.....完成签到,获得积分20
3秒前
余云开完成签到 ,获得积分10
3秒前
wangn发布了新的文献求助10
3秒前
Gru发布了新的文献求助10
4秒前
4秒前
通~发布了新的文献求助10
4秒前
可爱的函函应助体贴啤酒采纳,获得10
5秒前
李健应助gaos采纳,获得10
5秒前
6秒前
zmy发布了新的文献求助10
6秒前
电脑桌完成签到,获得积分10
7秒前
汉堡包应助咿咿呀呀采纳,获得10
8秒前
科研通AI5应助大胆遥采纳,获得10
8秒前
8秒前
标致的安荷完成签到,获得积分10
9秒前
ABin完成签到,获得积分10
9秒前
跳跃难胜发布了新的文献求助10
9秒前
阳光的虔纹完成签到 ,获得积分10
9秒前
10秒前
番茄爱喝粥完成签到,获得积分10
10秒前
CipherSage应助老王爱学习采纳,获得10
10秒前
Fa完成签到,获得积分10
10秒前
11秒前
kira完成签到,获得积分10
12秒前
舒服的茹嫣完成签到,获得积分20
12秒前
Stvn发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740