A computational framework to unify orthogonal information in DNA methylation and copy number aberrations in cell-free DNA for early cancer detection

DNA甲基化 计算生物学 生物 癌症 遗传学 亚硫酸氢盐测序 胎儿游离DNA DNA测序 DNA 基因 基因表达 胎儿 产前诊断 怀孕
作者
Qiang Wei,Chao Jin,Yan Wang,Shanshan Guo,Xu Guo,Xiaonan Liu,Jing An,Jinliang Xing,Bingshan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac200
摘要

Cell-free DNA (cfDNA) provides a convenient diagnosis avenue for noninvasive cancer detection. The current methods are focused on identifying circulating tumor DNA (ctDNA)s genomic aberrations, e.g. mutations, copy number aberrations (CNAs) or methylation changes. In this study, we report a new computational method that unifies two orthogonal pieces of information, namely methylation and CNAs, derived from whole-genome bisulfite sequencing (WGBS) data to quantify low tumor content in cfDNA. It implements a Bayes model to enrich ctDNA from WGBS data based on hypomethylation haplotypes, and subsequently, models CNAs for cancer detection. We generated WGBS data in a total of 262 samples, including high-depth (>20×, deduped high mapping quality reads) data in 76 samples with matched triplets (tumor, adjacent normal and cfDNA) and low-depth (~2.5×, deduped high mapping quality reads) data in 186 samples. We identified a total of 54 Mb regions of hypomethylation haplotypes for model building, a vast majority of which are not covered in the HumanMethylation450 arrays. We showed that our model is able to substantially enrich ctDNA reads (tens of folds), with clearly elevated CNAs that faithfully match the CNAs in the paired tumor samples. In the 19 hepatocellular carcinoma cfDNA samples, the estimated enrichment is as high as 16 fold, and in the simulation data, it can achieve over 30-fold enrichment for a ctDNA level of 0.5% with a sequencing depth of 600×. We also found that these hypomethylation regions are also shared among many cancer types, thus demonstrating the potential of our framework for pancancer early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XinH发布了新的文献求助30
刚刚
CodeCraft应助任性的大炮采纳,获得10
刚刚
所所应助风中以菱采纳,获得10
1秒前
星辰大海应助雪落采纳,获得10
2秒前
4秒前
小汁儿完成签到,获得积分10
4秒前
5秒前
崔西周发布了新的文献求助10
6秒前
陶渊明完成签到,获得积分10
7秒前
采姑娘的小蘑菇完成签到,获得积分10
7秒前
Leah_7完成签到,获得积分10
7秒前
153495159举报自由尔丝求助涉嫌违规
8秒前
10秒前
10秒前
通~发布了新的文献求助10
10秒前
wenx完成签到,获得积分10
11秒前
黑祎菲应助yutonghuan采纳,获得10
14秒前
14秒前
檀宇亭完成签到,获得积分10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
15秒前
迅速天亦应助科研通管家采纳,获得20
15秒前
16秒前
思源应助科研通管家采纳,获得30
16秒前
16秒前
orixero应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
惊骢应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
无花果应助通~采纳,获得10
16秒前
16秒前
活力毛豆完成签到 ,获得积分10
17秒前
153495159举报自由尔丝求助涉嫌违规
18秒前
雪落发布了新的文献求助10
18秒前
19秒前
1GE完成签到,获得积分10
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269550
求助须知:如何正确求助?哪些是违规求助? 2909205
关于积分的说明 8348156
捐赠科研通 2579474
什么是DOI,文献DOI怎么找? 1402821
科研通“疑难数据库(出版商)”最低求助积分说明 655523
邀请新用户注册赠送积分活动 634808