亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Active Learning Framework Improves Tumor Variant Interpretation

色素性干皮病 机器学习 人工智能 计算机科学 计算生物学 主动学习(机器学习) 个性化医疗 生物标志物 生物信息学 生物 基因 遗传学 DNA修复
作者
Alexandra M. Blee,Bian Li,Turner Pecen,Jens Meiler,Zachary D. Nagel,John A. Capra,Walter Chazin
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (15): 2704-2715 被引量:1
标识
DOI:10.1158/0008-5472.can-21-3798
摘要

Abstract For precision medicine to reach its full potential for treatment of cancer and other diseases, protein variant effect prediction tools are needed to characterize variants of unknown significance (VUS) in a patient's genome with respect to their likelihood to influence treatment response and outcomes. However, the performance of most variant prediction tools is limited by the difficulty of acquiring sufficient training and validation data. To overcome these limitations, we applied an iterative active learning approach starting from available biochemical, evolutionary, and functional annotations. With active learning, VUS that are most challenging to classify by an initial machine learning model are functionally evaluated and then reincorporated with the phenotype information in subsequent iterations of algorithm training. The potential of active learning to improve variant interpretation was first demonstrated by applying it to synthetic and deep mutational scanning datasets for four cancer-relevant proteins. The utility of the approach to guide interpretation and functional validation of tumor VUS was then probed on the nucleotide excision repair (NER) protein xeroderma pigmentosum complementation group A (XPA), a potential biomarker for cancer therapy sensitivity. A quantitative high-throughput cell-based NER activity assay was used to validate XPA VUS selected by the active learning strategy. In all cases, active learning yielded a significant improvement in variant effect predictions over traditional learning. These analyses suggest that active learning is well suited to significantly improve interpretation of VUS and cancer patient genomes. Significance: A novel machine learning approach predicts the impact of tumor mutations on cellular phenotypes, overcomes limited training data, minimizes costly functional validation, and advances efforts to implement cancer precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
6秒前
顾矜应助花椒的喵酱采纳,获得10
31秒前
44秒前
思源应助科研通管家采纳,获得10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
林非鹿完成签到 ,获得积分10
1分钟前
碘伏完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
周什么园发布了新的文献求助10
2分钟前
周什么园完成签到,获得积分10
2分钟前
2分钟前
love454106完成签到,获得积分10
2分钟前
love454106发布了新的文献求助10
2分钟前
2分钟前
2分钟前
舒心碧彤发布了新的文献求助10
2分钟前
绝尘发布了新的文献求助10
2分钟前
闪闪蜜粉完成签到 ,获得积分10
2分钟前
搜集达人应助绝尘采纳,获得10
2分钟前
舒心碧彤完成签到,获得积分10
3分钟前
AllRightReserved完成签到 ,获得积分10
3分钟前
隐形曼青应助Bob采纳,获得10
3分钟前
4分钟前
5分钟前
highestant完成签到,获得积分20
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
壹拾叁叁发布了新的文献求助10
5分钟前
我是老大应助壹拾叁叁采纳,获得10
5分钟前
5分钟前
5分钟前
徐徐徐发布了新的文献求助10
5分钟前
徐徐徐完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
淡漠发布了新的文献求助10
6分钟前
Hello应助Atalent采纳,获得10
6分钟前
6分钟前
归尘发布了新的文献求助10
6分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742368
求助须知:如何正确求助?哪些是违规求助? 3284904
关于积分的说明 10042104
捐赠科研通 3001593
什么是DOI,文献DOI怎么找? 1647398
邀请新用户注册赠送积分活动 784198
科研通“疑难数据库(出版商)”最低求助积分说明 750666