清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting miRNA-disease associations based on graph attention network with multi-source information

DNA微阵列 小RNA 计算生物学 计算机科学 图形 疾病 生物信息学 生物 遗传学 医学 基因 理论计算机科学 基因表达 病理
作者
Guanghui Li,Tao Fang,Yuejin Zhang,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1) 被引量:19
标识
DOI:10.1186/s12859-022-04796-7
摘要

Abstract Background There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also provide treatment solutions for diseases. As it is inefficient to identify undiscovered relationships between diseases and miRNAs using biotechnology, an explosion of computational methods have been advanced. However, the prediction accuracy of existing models is hampered by the sparsity of known association network and single-category feature, which is hard to model the complicated relationships between diseases and miRNAs. Results In this study, we advance a new computational framework (GATMDA) to discover unknown miRNA-disease associations based on graph attention network with multi-source information, which effectively fuses linear and non-linear features. In our method, the linear features of diseases and miRNAs are constructed by disease-lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, the graph attention network is employed to extract the non-linear features of diseases and miRNAs by aggregating information of each neighbor with different weights. Finally, the random forest algorithm is applied to infer the disease-miRNA correlation pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold cross validation, which is superior to other previous models. In addition, case studies conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 out of the top fifty prioritized candidates are verified by biological experiments. Conclusions The extensive experimental results justify the accuracy and utility of GATMDA and we could anticipate that it may regard as a utility tool for identifying unobserved disease-miRNA relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡醉波wuliao完成签到 ,获得积分10
6秒前
英姑应助清秀浩宇采纳,获得10
26秒前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得20
1分钟前
隐形曼青应助Liu采纳,获得10
1分钟前
2分钟前
Liu发布了新的文献求助10
2分钟前
lwk完成签到,获得积分10
3分钟前
3分钟前
lwk发布了新的文献求助10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
Liu完成签到,获得积分10
3分钟前
科研通AI2S应助iuv采纳,获得10
3分钟前
JiangHan发布了新的文献求助10
4分钟前
搜集达人应助lwk采纳,获得10
4分钟前
科目三应助JiangHan采纳,获得10
4分钟前
++完成签到 ,获得积分10
4分钟前
Jenny完成签到,获得积分10
4分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
5分钟前
xiaoshoujun完成签到,获得积分10
5分钟前
6分钟前
7分钟前
Lianna发布了新的文献求助20
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
7分钟前
Lianna完成签到,获得积分10
7分钟前
8分钟前
星辰大海应助punctuation采纳,获得10
8分钟前
8分钟前
谢小盟完成签到 ,获得积分10
8分钟前
清秀浩宇发布了新的文献求助10
8分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158649
求助须知:如何正确求助?哪些是违规求助? 2809798
关于积分的说明 7883715
捐赠科研通 2468521
什么是DOI,文献DOI怎么找? 1314293
科研通“疑难数据库(出版商)”最低求助积分说明 630575
版权声明 601983