Predicting miRNA-disease associations based on graph attention network with multi-source information

DNA微阵列 小RNA 计算生物学 计算机科学 图形 疾病 生物信息学 生物 遗传学 医学 基因 理论计算机科学 基因表达 病理
作者
Guanghui Li,Tao Fang,Yuejin Zhang,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1) 被引量:27
标识
DOI:10.1186/s12859-022-04796-7
摘要

There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also provide treatment solutions for diseases. As it is inefficient to identify undiscovered relationships between diseases and miRNAs using biotechnology, an explosion of computational methods have been advanced. However, the prediction accuracy of existing models is hampered by the sparsity of known association network and single-category feature, which is hard to model the complicated relationships between diseases and miRNAs.In this study, we advance a new computational framework (GATMDA) to discover unknown miRNA-disease associations based on graph attention network with multi-source information, which effectively fuses linear and non-linear features. In our method, the linear features of diseases and miRNAs are constructed by disease-lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, the graph attention network is employed to extract the non-linear features of diseases and miRNAs by aggregating information of each neighbor with different weights. Finally, the random forest algorithm is applied to infer the disease-miRNA correlation pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold cross validation, which is superior to other previous models. In addition, case studies conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 out of the top fifty prioritized candidates are verified by biological experiments.The extensive experimental results justify the accuracy and utility of GATMDA and we could anticipate that it may regard as a utility tool for identifying unobserved disease-miRNA relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LBX关闭了LBX文献求助
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
绝对是疯狂摔角完成签到,获得积分20
2秒前
852应助淡然的毒娘采纳,获得10
2秒前
wzh完成签到 ,获得积分10
3秒前
深情安青应助围城烟火采纳,获得100
3秒前
hlf发布了新的文献求助10
3秒前
4秒前
我是老大应助李大了采纳,获得10
5秒前
5秒前
可可的好先生完成签到,获得积分10
5秒前
6秒前
月yue完成签到,获得积分10
6秒前
6秒前
midokaori发布了新的文献求助10
6秒前
读书妖精文亭逐完成签到,获得积分10
7秒前
觅海完成签到 ,获得积分10
7秒前
7秒前
wanci应助科研沸羊羊采纳,获得10
8秒前
所所应助my采纳,获得10
9秒前
zmmouc完成签到,获得积分10
9秒前
刚子完成签到,获得积分10
9秒前
bkagyin应助liuzengzhang666采纳,获得10
9秒前
晓湫发布了新的文献求助10
9秒前
丰富的不惜完成签到,获得积分10
10秒前
Sucht发布了新的文献求助30
10秒前
11秒前
蔚亭完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
liu完成签到 ,获得积分10
12秒前
传奇3应助xiaoloong采纳,获得10
12秒前
李Li发布了新的文献求助10
12秒前
澈千子发布了新的文献求助10
12秒前
13秒前
田様应助midokaori采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128