Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management

强化学习 马尔可夫决策过程 计算机科学 能源消耗 能源管理 电价 马尔可夫过程 需求响应 人工智能 增强学习 运筹学 数学优化 能量(信号处理) 工程类 电力市场 统计 数学 电气工程
作者
Renzhi Lu,Zhenyu Jiang,Huaming Wu,Yuemin Ding,Dong Wang,Hai‐Tao Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2662-2673 被引量:37
标识
DOI:10.1109/tii.2022.3183802
摘要

Residential energy consumption continues to climb steadily, requiring intelligent energy management strategies to reduce power system pressures and residential electricity bills. However, it is challenging to design such strategies due to the random nature of electricity pricing, appliance demand, and user behavior. This article presents a novel reward shaping (RS)-based actor–critic deep reinforcement learning (ACDRL) algorithm to manage the residential energy consumption profile with limited information about the uncertain factors. Specifically, the interaction between the energy management center and various residential loads is modeled as a Markov decision process that provides a fundamental mathematical framework to represent the decision-making in situations where outcomes are partially random and partially influenced by the decision-maker control signals, in which the key elements containing the agent, environment, state, action, and reward are carefully designed, and the electricity price is considered as a stochastic variable. An RS-ACDRL algorithm is then developed, incorporating both the actor and critic network and an RS mechanism, to learn the optimal energy consumption schedules. Several case studies involving real-world data are conducted to evaluate the performance of the proposed algorithm. Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art RL methods in terms of learning speed, solution optimality, and cost reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihao完成签到 ,获得积分10
1秒前
1秒前
1秒前
ZephyrZY完成签到,获得积分10
1秒前
2秒前
Cunese完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
wsy发布了新的文献求助10
5秒前
zhengriqian发布了新的文献求助10
5秒前
共享精神应助义气的青枫采纳,获得10
5秒前
bt4567发布了新的文献求助10
5秒前
5秒前
yuisl完成签到,获得积分10
6秒前
6秒前
内向灵凡发布了新的文献求助10
6秒前
rei402完成签到,获得积分20
7秒前
xuxingjie发布了新的文献求助10
7秒前
wf发布了新的文献求助10
7秒前
Sea_U发布了新的文献求助10
7秒前
lifan完成签到,获得积分10
8秒前
英俊的铭应助qwwee采纳,获得10
9秒前
4444发布了新的文献求助10
9秒前
英姑应助时尚的紫山采纳,获得10
9秒前
9秒前
10秒前
甜甜的幼珊完成签到,获得积分10
10秒前
吃人不眨眼应助跑快点采纳,获得20
10秒前
11秒前
大小米发布了新的文献求助30
11秒前
hyd1640发布了新的文献求助200
13秒前
sy发布了新的文献求助10
13秒前
rei402发布了新的文献求助10
13秒前
小老鼠完成签到 ,获得积分10
14秒前
我不爱池鱼应助果冻采纳,获得10
14秒前
14秒前
FashionBoy应助嘿嘿嘿采纳,获得10
15秒前
15秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462