Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management

强化学习 马尔可夫决策过程 计算机科学 能源消耗 能源管理 电价 马尔可夫过程 需求响应 人工智能 增强学习 运筹学 数学优化 能量(信号处理) 工程类 电力市场 电气工程 统计 数学
作者
Renzhi Lu,Zhenyu Jiang,Huaming Wu,Yuemin Ding,Dong Wang,Hai‐Tao Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2662-2673 被引量:37
标识
DOI:10.1109/tii.2022.3183802
摘要

Residential energy consumption continues to climb steadily, requiring intelligent energy management strategies to reduce power system pressures and residential electricity bills. However, it is challenging to design such strategies due to the random nature of electricity pricing, appliance demand, and user behavior. This article presents a novel reward shaping (RS)-based actor–critic deep reinforcement learning (ACDRL) algorithm to manage the residential energy consumption profile with limited information about the uncertain factors. Specifically, the interaction between the energy management center and various residential loads is modeled as a Markov decision process that provides a fundamental mathematical framework to represent the decision-making in situations where outcomes are partially random and partially influenced by the decision-maker control signals, in which the key elements containing the agent, environment, state, action, and reward are carefully designed, and the electricity price is considered as a stochastic variable. An RS-ACDRL algorithm is then developed, incorporating both the actor and critic network and an RS mechanism, to learn the optimal energy consumption schedules. Several case studies involving real-world data are conducted to evaluate the performance of the proposed algorithm. Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art RL methods in terms of learning speed, solution optimality, and cost reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jie完成签到,获得积分20
1秒前
111发布了新的文献求助30
2秒前
合适迎彤完成签到,获得积分10
4秒前
呼安完成签到,获得积分10
5秒前
5秒前
AH完成签到,获得积分10
6秒前
6秒前
精明的忆灵完成签到,获得积分10
7秒前
王东旭发布了新的文献求助10
7秒前
8秒前
8秒前
做好胶水完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
MM发布了新的文献求助10
9秒前
踏实问兰发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
刚刚学会找文献的牛马完成签到,获得积分10
11秒前
FashionBoy应助23582采纳,获得10
11秒前
11秒前
ArCaaaat完成签到,获得积分10
12秒前
做好胶水发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
李俊枫发布了新的文献求助10
13秒前
hh完成签到,获得积分20
13秒前
111完成签到,获得积分10
13秒前
Atlantis发布了新的文献求助10
14秒前
小马甲应助tclouds采纳,获得10
14秒前
深情安青应助犹豫的宝莹采纳,获得10
15秒前
15秒前
zengyile发布了新的文献求助10
15秒前
16秒前
123发布了新的文献求助10
16秒前
ding应助MM采纳,获得10
16秒前
ll完成签到 ,获得积分10
16秒前
17秒前
CodeCraft应助傲娇书易采纳,获得50
17秒前
18秒前
大模型应助泡面公主采纳,获得10
19秒前
科研通AI2S应助Marciu33采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712794
求助须知:如何正确求助?哪些是违规求助? 5212274
关于积分的说明 15268761
捐赠科研通 4864595
什么是DOI,文献DOI怎么找? 2611574
邀请新用户注册赠送积分活动 1561846
关于科研通互助平台的介绍 1519118