Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management

强化学习 马尔可夫决策过程 计算机科学 能源消耗 能源管理 电价 马尔可夫过程 需求响应 人工智能 增强学习 运筹学 数学优化 能量(信号处理) 工程类 电力市场 统计 数学 电气工程
作者
Renzhi Lu,Zhenyu Jiang,Huaming Wu,Yuemin Ding,Dong Wang,Hai‐Tao Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2662-2673 被引量:37
标识
DOI:10.1109/tii.2022.3183802
摘要

Residential energy consumption continues to climb steadily, requiring intelligent energy management strategies to reduce power system pressures and residential electricity bills. However, it is challenging to design such strategies due to the random nature of electricity pricing, appliance demand, and user behavior. This article presents a novel reward shaping (RS)-based actor–critic deep reinforcement learning (ACDRL) algorithm to manage the residential energy consumption profile with limited information about the uncertain factors. Specifically, the interaction between the energy management center and various residential loads is modeled as a Markov decision process that provides a fundamental mathematical framework to represent the decision-making in situations where outcomes are partially random and partially influenced by the decision-maker control signals, in which the key elements containing the agent, environment, state, action, and reward are carefully designed, and the electricity price is considered as a stochastic variable. An RS-ACDRL algorithm is then developed, incorporating both the actor and critic network and an RS mechanism, to learn the optimal energy consumption schedules. Several case studies involving real-world data are conducted to evaluate the performance of the proposed algorithm. Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art RL methods in terms of learning speed, solution optimality, and cost reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萧水白应助王秋婷采纳,获得10
1秒前
4秒前
7秒前
JamesPei应助JYZ采纳,获得10
8秒前
清欢完成签到 ,获得积分10
8秒前
10秒前
李健鹏完成签到 ,获得积分10
11秒前
天天快乐应助chelsea采纳,获得10
12秒前
qtmxxx发布了新的文献求助10
13秒前
14秒前
常小敏完成签到 ,获得积分10
14秒前
天天快乐应助DONG采纳,获得10
15秒前
15秒前
xiong完成签到 ,获得积分10
16秒前
芳凤凤凤iona完成签到,获得积分10
17秒前
17秒前
害羞的裘发布了新的文献求助30
19秒前
19秒前
兴奋芷发布了新的文献求助10
19秒前
21秒前
Bioc发布了新的文献求助10
22秒前
orixero应助捏个小雪团采纳,获得10
22秒前
23秒前
54489发布了新的文献求助10
24秒前
24秒前
xxx1234完成签到,获得积分10
26秒前
lin应助害羞的裘采纳,获得30
28秒前
棠梨子完成签到,获得积分10
28秒前
大模型应助枯藤老柳树采纳,获得10
28秒前
JYZ发布了新的文献求助10
29秒前
文艺的梦秋完成签到,获得积分10
29秒前
29秒前
33秒前
缥缈西装发布了新的文献求助10
34秒前
DONG发布了新的文献求助10
34秒前
35秒前
脑洞疼应助兴奋芷采纳,获得10
35秒前
37秒前
科研通AI2S应助郑浩圆采纳,获得10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260079
求助须知:如何正确求助?哪些是违规求助? 2901425
关于积分的说明 8315502
捐赠科研通 2570933
什么是DOI,文献DOI怎么找? 1396769
科研通“疑难数据库(出版商)”最低求助积分说明 653562
邀请新用户注册赠送积分活动 631990