Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management

强化学习 马尔可夫决策过程 计算机科学 能源消耗 能源管理 电价 马尔可夫过程 需求响应 人工智能 增强学习 运筹学 数学优化 能量(信号处理) 工程类 电力市场 统计 数学 电气工程
作者
Renzhi Lu,Zhenyu Jiang,Huaming Wu,Yuemin Ding,Dong Wang,Hai‐Tao Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2662-2673 被引量:37
标识
DOI:10.1109/tii.2022.3183802
摘要

Residential energy consumption continues to climb steadily, requiring intelligent energy management strategies to reduce power system pressures and residential electricity bills. However, it is challenging to design such strategies due to the random nature of electricity pricing, appliance demand, and user behavior. This article presents a novel reward shaping (RS)-based actor–critic deep reinforcement learning (ACDRL) algorithm to manage the residential energy consumption profile with limited information about the uncertain factors. Specifically, the interaction between the energy management center and various residential loads is modeled as a Markov decision process that provides a fundamental mathematical framework to represent the decision-making in situations where outcomes are partially random and partially influenced by the decision-maker control signals, in which the key elements containing the agent, environment, state, action, and reward are carefully designed, and the electricity price is considered as a stochastic variable. An RS-ACDRL algorithm is then developed, incorporating both the actor and critic network and an RS mechanism, to learn the optimal energy consumption schedules. Several case studies involving real-world data are conducted to evaluate the performance of the proposed algorithm. Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art RL methods in terms of learning speed, solution optimality, and cost reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助畅快访蕊采纳,获得10
2秒前
SCI的李发布了新的文献求助10
2秒前
李健的小迷弟应助zan12131采纳,获得10
2秒前
脑袋空空完成签到,获得积分10
2秒前
2秒前
打打应助dd采纳,获得10
2秒前
舆上帝同行完成签到,获得积分10
3秒前
3秒前
利休茶完成签到,获得积分20
3秒前
yangya发布了新的文献求助20
4秒前
5秒前
静听风吼发布了新的文献求助10
5秒前
intume发布了新的文献求助10
6秒前
卡卡西完成签到,获得积分0
6秒前
科研通AI2S应助否认冶游史采纳,获得10
7秒前
失眠万仇发布了新的文献求助10
7秒前
蝃蝀发布了新的文献求助10
8秒前
七叶树完成签到,获得积分10
8秒前
CipherSage应助Hailey采纳,获得10
8秒前
9秒前
9秒前
希望天下0贩的0应助韩凡采纳,获得30
10秒前
我不到啊完成签到,获得积分10
11秒前
强健的幻丝完成签到,获得积分20
11秒前
12秒前
不会迷途发布了新的文献求助10
12秒前
CodeCraft应助xxx采纳,获得10
13秒前
静心完成签到,获得积分10
13秒前
Adler完成签到,获得积分10
14秒前
junyang完成签到,获得积分10
14秒前
畅快访蕊发布了新的文献求助10
14秒前
缥缈的幻雪完成签到 ,获得积分10
15秒前
DamenS发布了新的文献求助10
15秒前
16秒前
yuyi发布了新的文献求助10
17秒前
18秒前
18秒前
满意沛槐发布了新的文献求助10
19秒前
今后应助失眠万仇采纳,获得30
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638