AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification

可解释性 计算机科学 人工智能 概化理论 药物重新定位 判决 药物靶点 图形 机器学习 水准点(测量) 自然语言处理 药品 化学 理论计算机科学 数学 精神科 大地测量学 统计 地理 生物化学 心理学
作者
Mehdi Yazdani-Jahromi,Niloofar Yousefi,Aida Tayebi,Elayaraja Kolanthai,Craig J. Neal,Sudipta Seal,Özlem Özmen Garibay
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:47
标识
DOI:10.1093/bib/bbac272
摘要

Abstract In this study, we introduce an interpretable graph-based deep learning prediction model, AttentionSiteDTI, which utilizes protein binding sites along with a self-attention mechanism to address the problem of drug–target interaction prediction. Our proposed model is inspired by sentence classification models in the field of Natural Language Processing, where the drug–target complex is treated as a sentence with relational meaning between its biochemical entities a.k.a. protein pockets and drug molecule. AttentionSiteDTI enables interpretability by identifying the protein binding sites that contribute the most toward the drug–target interaction. Results on three benchmark datasets show improved performance compared with the current state-of-the-art models. More significantly, unlike previous studies, our model shows superior performance, when tested on new proteins (i.e. high generalizability). Through multidisciplinary collaboration, we further experimentally evaluate the practical potential of our proposed approach. To achieve this, we first computationally predict the binding interactions between some candidate compounds and a target protein, then experimentally validate the binding interactions for these pairs in the laboratory. The high agreement between the computationally predicted and experimentally observed (measured) drug–target interactions illustrates the potential of our method as an effective pre-screening tool in drug repurposing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
脑洞疼应助独特的代芙采纳,获得10
2秒前
都美秋完成签到 ,获得积分10
2秒前
Yaaaaaa发布了新的文献求助10
2秒前
buzhinianjiu完成签到 ,获得积分10
3秒前
3秒前
今后应助小巧易文采纳,获得30
4秒前
4秒前
wlf_Jesus完成签到,获得积分10
4秒前
SolderOH完成签到,获得积分10
5秒前
顾矜应助尊敬的寄松采纳,获得10
5秒前
萝卜完成签到,获得积分10
5秒前
6秒前
7秒前
安静柜子关注了科研通微信公众号
7秒前
huaxi1发布了新的文献求助10
7秒前
浮游应助文献能全部免费采纳,获得10
7秒前
宵宵完成签到,获得积分10
7秒前
小蘑菇应助不倒翁37采纳,获得10
8秒前
8秒前
期待应助清新的千易采纳,获得10
9秒前
wlf_Jesus发布了新的文献求助10
9秒前
大卷完成签到,获得积分10
9秒前
品品完成签到,获得积分10
10秒前
10秒前
11秒前
小二郎应助zjz采纳,获得10
11秒前
wgm发布了新的文献求助10
11秒前
Z1070741749完成签到,获得积分10
12秒前
caas_ifr_zp发布了新的文献求助10
13秒前
13秒前
打打应助赧赧采纳,获得10
14秒前
14秒前
所所应助大卷采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393938
求助须知:如何正确求助?哪些是违规求助? 4515293
关于积分的说明 14053437
捐赠科研通 4426472
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529