Transfer learning improves landslide susceptibility assessment

山崩 学习迁移 领域(数学分析) 计算机科学 负迁移 人工智能 对数 机器学习 知识转移 地质学 数据挖掘 地震学 知识管理 数学分析 哲学 语言学 第一语言 数学
作者
Haojie Wang,Lin Wang,Limin Zhang
出处
期刊:Gondwana Research [Elsevier BV]
卷期号:123: 238-254 被引量:41
标识
DOI:10.1016/j.gr.2022.07.008
摘要

Landslide susceptibility assessment is often hindered by the lack of historical landslide records. In this study, we propose a transfer learning-based approach for landslide susceptibility assessment, aiming at substantially improving susceptibility prediction using knowledge outside the target domain, especially for regions with limited landslide data. The proposed method first trains a deep learning landslide susceptibility model (i.e., pre-trained model or source model) in a data-rich region (i.e., source domain). Transfer learning techniques are then applied to transfer the knowledge from the source domain to a new region (i.e., target domain) through model transfer and fine-tuning. The transferred model not only carries knowledge from the source domain but is also retrained with data from the target domain, hence achieving a much-improved performance in the new region even with very limited new data. A comprehensive case study in Hong Kong is conducted to investigate the feasibility of the proposed method and the influence of source domain scale on the transfer learning efficiency. Substantial improvements can be found with the proposed method: the accuracies on the test set of the target domain can be increased by 30% and the logarithmic losses can be decreased by 62%. We also reveal that transferring models from larger source domains can accomplish more improvements in both data-rich and data-limited cases. As the very first study that introduces deep transfer learning to landslide susceptibility assessment, the proposed method enables the sharing of landslide knowledge between regions, and is shown to be an intelligent and promising way for improving landslide susceptibility assessment for data-limited regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
月关发布了新的文献求助10
1秒前
1秒前
斯文败类应助sam1514采纳,获得10
1秒前
酷波er应助刘智山采纳,获得10
2秒前
2秒前
Jacklzu完成签到,获得积分10
2秒前
wrwywzx完成签到,获得积分10
3秒前
小叶大王完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
Joleneli100完成签到,获得积分10
5秒前
bao驳回了无花果应助
5秒前
5秒前
星辰大海应助渊_采纳,获得10
5秒前
思绪完成签到 ,获得积分10
6秒前
YEHEI完成签到 ,获得积分10
6秒前
李健应助Na2CO3采纳,获得10
6秒前
vesta完成签到,获得积分10
6秒前
6秒前
7秒前
GG发布了新的文献求助10
7秒前
OKOK发布了新的文献求助10
7秒前
汉堡一号完成签到,获得积分10
7秒前
7秒前
7秒前
Patrick完成签到,获得积分20
7秒前
7秒前
026发布了新的文献求助10
7秒前
richestchen完成签到,获得积分10
7秒前
8秒前
LSY发布了新的文献求助10
8秒前
junjie发布了新的文献求助10
8秒前
与秋逐鹿发布了新的文献求助10
9秒前
科研通AI6应助邓谷云采纳,获得10
9秒前
9秒前
风云完成签到,获得积分10
9秒前
所所应助harden采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064