Transfer learning improves landslide susceptibility assessment

山崩 学习迁移 领域(数学分析) 计算机科学 负迁移 人工智能 对数 机器学习 知识转移 地质学 数据挖掘 地震学 数学分析 语言学 哲学 数学 第一语言 知识管理
作者
Haojie Wang,Lin Wang,Limin Zhang
出处
期刊:Gondwana Research [Elsevier]
卷期号:123: 238-254 被引量:41
标识
DOI:10.1016/j.gr.2022.07.008
摘要

Landslide susceptibility assessment is often hindered by the lack of historical landslide records. In this study, we propose a transfer learning-based approach for landslide susceptibility assessment, aiming at substantially improving susceptibility prediction using knowledge outside the target domain, especially for regions with limited landslide data. The proposed method first trains a deep learning landslide susceptibility model (i.e., pre-trained model or source model) in a data-rich region (i.e., source domain). Transfer learning techniques are then applied to transfer the knowledge from the source domain to a new region (i.e., target domain) through model transfer and fine-tuning. The transferred model not only carries knowledge from the source domain but is also retrained with data from the target domain, hence achieving a much-improved performance in the new region even with very limited new data. A comprehensive case study in Hong Kong is conducted to investigate the feasibility of the proposed method and the influence of source domain scale on the transfer learning efficiency. Substantial improvements can be found with the proposed method: the accuracies on the test set of the target domain can be increased by 30% and the logarithmic losses can be decreased by 62%. We also reveal that transferring models from larger source domains can accomplish more improvements in both data-rich and data-limited cases. As the very first study that introduces deep transfer learning to landslide susceptibility assessment, the proposed method enables the sharing of landslide knowledge between regions, and is shown to be an intelligent and promising way for improving landslide susceptibility assessment for data-limited regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助看看采纳,获得10
刚刚
2秒前
2秒前
卢健辉发布了新的文献求助10
2秒前
3秒前
cookie完成签到,获得积分10
3秒前
JMZ完成签到 ,获得积分10
5秒前
英姑应助星星采纳,获得10
5秒前
spurs17发布了新的文献求助30
6秒前
LH完成签到,获得积分10
6秒前
CodeCraft应助Island采纳,获得10
7秒前
annis完成签到,获得积分10
7秒前
小黄应助asir_xw采纳,获得10
8秒前
认真的rain完成签到,获得积分10
8秒前
糊涂的小伙完成签到,获得积分10
9秒前
芒果豆豆完成签到,获得积分10
9秒前
赎罪完成签到 ,获得积分10
10秒前
卢健辉完成签到,获得积分10
10秒前
10秒前
11秒前
负责的中道完成签到,获得积分10
12秒前
dyh6802发布了新的文献求助10
12秒前
儒雅八宝粥完成签到 ,获得积分10
12秒前
深情安青应助科研小菜鸟采纳,获得10
13秒前
姜灭绝完成签到,获得积分10
13秒前
三七二一完成签到,获得积分10
13秒前
14秒前
大方的寒烟完成签到,获得积分10
15秒前
17秒前
橘寄完成签到,获得积分10
17秒前
请叫我风吹麦浪应助mito采纳,获得10
18秒前
Smallhei完成签到,获得积分10
18秒前
19秒前
111111111完成签到,获得积分20
19秒前
20秒前
阿牛完成签到,获得积分20
21秒前
22秒前
111111111发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808