A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules

医学 接收机工作特性 腺癌 基本事实 肺腺癌 放射科 核医学 人工智能 计算机科学 癌症 内科学
作者
Y. Lv,J. Ye,Y.L. Yin,Jun Ling,Xiaojie Pan
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (10): e741-e748 被引量:12
标识
DOI:10.1016/j.crad.2022.06.004
摘要

To investigate and compare the performance of conventional, radiomic, combined, and delta-radiomic features to predict the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules (GGNs).The present retrospective study included 216 GGNs confirmed surgically as pulmonary adenocarcinomas. All the thin-section computed tomography (CT) images were imported into the software of the United Imaging Intelligence research portal, and radiomic features were extracted with three-dimensional (3D) regions of interest. Least Absolute Shrinkage and Selection Operator was used to select the optimal radiomic features. Four models were constructed, including conventional, radiomic, combined conventional and radiomic, and delta-radiomic models. The receiver operating characteristic curves were built to evaluate the validity of these.The type, long diameter, shape, margin, vacuole, air bronchus, vascular convergence, and pleural traction exhibited significant differences between pre-invasive lesions (PILs)/minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) groups were selected for conventional model building. Nine radiomic features were selected to build the radiomic model. The four models indicated optimal performance (AUC > 0.7). The radiomic and combined models exhibited the highest diagnostic efficiency, and their AUC were 0.89 and 0.88 in the training set, and 0.87 and 0.88 in the validation set, respectively. The delta-radiomic model indicated that the AUC was 0.83 in the training set, and 0.76 in the validation set. Finally, the conventional model exhibited an AUC in the training and validation sets of 0.78 and 0.76.The radiomic model and combined model, in particular, and the delta-radiomic model all demonstrated improved diagnostic efficiency in differentiating IA from PIL/MIA than that of the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chennn完成签到,获得积分10
刚刚
2秒前
3秒前
晗月完成签到,获得积分10
3秒前
情怀应助如意枫叶采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
Akim应助SS采纳,获得10
7秒前
张雷应助清新的夜蕾采纳,获得20
7秒前
chennn发布了新的文献求助10
7秒前
罗一完成签到,获得积分10
9秒前
11秒前
丘比特应助wu采纳,获得10
14秒前
俏皮芷蕊发布了新的文献求助30
14秒前
称心的菲鹰完成签到,获得积分10
15秒前
碧蓝问安发布了新的文献求助10
16秒前
16秒前
打打应助ZZZ采纳,获得10
18秒前
22秒前
呆萌板凳发布了新的文献求助10
22秒前
hp关闭了hp文献求助
23秒前
24秒前
都选C完成签到,获得积分10
25秒前
壮观以松完成签到,获得积分10
25秒前
Liufgui应助郭小宝采纳,获得20
25秒前
heli完成签到,获得积分10
27秒前
如意枫叶发布了新的文献求助10
28秒前
都选C发布了新的文献求助10
29秒前
英俊的铭应助淡烟流水采纳,获得10
30秒前
30秒前
Miracle完成签到,获得积分10
32秒前
36秒前
wu发布了新的文献求助10
36秒前
忧心的听双完成签到,获得积分10
36秒前
Timon完成签到,获得积分10
37秒前
深情安青应助Miracle采纳,获得10
38秒前
李健应助猪猪hero采纳,获得10
38秒前
kingwill应助Harlotte采纳,获得60
38秒前
张雯思发布了新的文献求助10
39秒前
西瓜刀发布了新的文献求助10
39秒前
寒冷的发箍完成签到,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136