A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules

医学 接收机工作特性 腺癌 基本事实 肺腺癌 放射科 核医学 人工智能 计算机科学 癌症 内科学
作者
Y. Lv,J. Ye,Y.L. Yin,Jun Ling,Xiaojie Pan
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e741-e748 被引量:13
标识
DOI:10.1016/j.crad.2022.06.004
摘要

To investigate and compare the performance of conventional, radiomic, combined, and delta-radiomic features to predict the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules (GGNs).The present retrospective study included 216 GGNs confirmed surgically as pulmonary adenocarcinomas. All the thin-section computed tomography (CT) images were imported into the software of the United Imaging Intelligence research portal, and radiomic features were extracted with three-dimensional (3D) regions of interest. Least Absolute Shrinkage and Selection Operator was used to select the optimal radiomic features. Four models were constructed, including conventional, radiomic, combined conventional and radiomic, and delta-radiomic models. The receiver operating characteristic curves were built to evaluate the validity of these.The type, long diameter, shape, margin, vacuole, air bronchus, vascular convergence, and pleural traction exhibited significant differences between pre-invasive lesions (PILs)/minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) groups were selected for conventional model building. Nine radiomic features were selected to build the radiomic model. The four models indicated optimal performance (AUC > 0.7). The radiomic and combined models exhibited the highest diagnostic efficiency, and their AUC were 0.89 and 0.88 in the training set, and 0.87 and 0.88 in the validation set, respectively. The delta-radiomic model indicated that the AUC was 0.83 in the training set, and 0.76 in the validation set. Finally, the conventional model exhibited an AUC in the training and validation sets of 0.78 and 0.76.The radiomic model and combined model, in particular, and the delta-radiomic model all demonstrated improved diagnostic efficiency in differentiating IA from PIL/MIA than that of the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助溜溜很优秀采纳,获得10
1秒前
鱼圆杂铺完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助嘻嘻采纳,获得10
1秒前
Raymond应助风中莫英采纳,获得10
2秒前
1111发布了新的文献求助10
2秒前
七七完成签到 ,获得积分10
2秒前
京墨襦完成签到 ,获得积分10
3秒前
johnson2012完成签到,获得积分10
3秒前
公茂源完成签到 ,获得积分10
3秒前
3秒前
超级访云完成签到,获得积分10
3秒前
背后白梦发布了新的文献求助20
4秒前
wuran发布了新的文献求助10
4秒前
Jupiter 1234发布了新的文献求助10
5秒前
脑洞疼应助Laurie采纳,获得10
5秒前
嗒嗒完成签到,获得积分10
5秒前
5秒前
Firenze完成签到,获得积分20
5秒前
lql发布了新的文献求助10
6秒前
慕青应助Zhou采纳,获得10
6秒前
ZZ0901完成签到,获得积分10
6秒前
Star发布了新的文献求助10
6秒前
tangzanwayne完成签到 ,获得积分10
7秒前
7秒前
贪玩的甜瓜完成签到,获得积分10
8秒前
yzizz发布了新的文献求助10
8秒前
8秒前
迷人圣诞树很闲完成签到,获得积分10
9秒前
神勇书芹完成签到,获得积分10
9秒前
balabala发布了新的文献求助10
9秒前
zsd完成签到,获得积分20
9秒前
黑米粥发布了新的文献求助200
9秒前
微生物小白学习ing完成签到,获得积分20
10秒前
低调小狗完成签到,获得积分10
10秒前
10秒前
烟花应助cici采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285