Deep learning in automated ultrasonic NDE – Developments, axioms and opportunities

自动化 灵活性(工程) 背景(考古学) 计算机科学 人工智能 任务(项目管理) 系统工程 工程类 数据科学 数学 机械工程 生物 统计 古生物学
作者
Sergio Cantero‐Chinchilla,Paul D. Wilcox,Anthony J. Croxford
出处
期刊:NDT & E international [Elsevier]
卷期号:131: 102703-102703 被引量:87
标识
DOI:10.1016/j.ndteint.2022.102703
摘要

The analysis of ultrasonic NDE data has traditionally been addressed by a trained operator manually interpreting data with the support of rudimentary automation tools. Recently, many demonstrations of deep learning (DL) techniques that address individual NDE tasks (data pre-processing, defect detection, defect characterisation, and property measurement) have started to emerge in the research community. These methods have the potential to offer high flexibility, efficiency, and accuracy subject to the availability of sufficient training data. Moreover, they enable the automation of complex processes that span one or more NDE steps (e.g. detection, characterisation, and sizing). There is, however, a lack of consensus on the direction and requirements that these new methods should follow. These elements are critical to help achieve automation of ultrasonic NDE driven by artificial intelligence such that the research community, industry, and regulatory bodies embrace it. This paper reviews the state-of-the-art of autonomous ultrasonic NDE enabled by DL methodologies. The review is organised by the NDE tasks that are addressed by means of DL approaches. Key remaining challenges for each task are noted. Basic axiomatic principles for DL methods in NDE are identified based on the literature review, relevant international regulations, and current industrial needs. By placing DL methods in the context of general NDE automation levels, this paper aims to provide a roadmap for future research and development in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助houbinghua采纳,获得10
1秒前
妮妮完成签到,获得积分10
2秒前
2秒前
优美飞薇发布了新的文献求助10
2秒前
asd发布了新的文献求助10
2秒前
3秒前
Rui完成签到,获得积分10
3秒前
3秒前
flywee发布了新的文献求助10
3秒前
一只冬瓜zZ完成签到 ,获得积分10
3秒前
木质素爱好者完成签到,获得积分10
4秒前
徐凤年完成签到,获得积分10
4秒前
猫头鹰完成签到,获得积分10
5秒前
汉堡包应助风中十三采纳,获得10
5秒前
5秒前
哈哈哈哈哈完成签到,获得积分10
5秒前
莫言荨发布了新的文献求助10
6秒前
王张李高发布了新的文献求助10
6秒前
6秒前
天马行空jzy完成签到,获得积分10
7秒前
8秒前
missinged完成签到,获得积分10
8秒前
慕青应助bujiachong采纳,获得10
8秒前
乐乐完成签到,获得积分10
8秒前
小白发布了新的文献求助10
9秒前
12秒前
深情安青应助王张李高采纳,获得10
12秒前
14秒前
坦率尔蝶完成签到 ,获得积分10
14秒前
16秒前
caisongliang发布了新的文献求助10
16秒前
残忆完成签到 ,获得积分10
17秒前
九千七完成签到,获得积分10
18秒前
SShi完成签到,获得积分10
19秒前
baibai完成签到,获得积分10
20秒前
英姑应助TCA采纳,获得10
20秒前
20秒前
夏夏子发布了新的文献求助10
20秒前
laola完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092