Deep learning in automated ultrasonic NDE – Developments, axioms and opportunities

自动化 灵活性(工程) 背景(考古学) 计算机科学 人工智能 任务(项目管理) 系统工程 工程类 数据科学 数学 机械工程 生物 统计 古生物学
作者
Sergio Cantero‐Chinchilla,Paul D. Wilcox,Anthony J. Croxford
出处
期刊:NDT & E international [Elsevier BV]
卷期号:131: 102703-102703 被引量:87
标识
DOI:10.1016/j.ndteint.2022.102703
摘要

The analysis of ultrasonic NDE data has traditionally been addressed by a trained operator manually interpreting data with the support of rudimentary automation tools. Recently, many demonstrations of deep learning (DL) techniques that address individual NDE tasks (data pre-processing, defect detection, defect characterisation, and property measurement) have started to emerge in the research community. These methods have the potential to offer high flexibility, efficiency, and accuracy subject to the availability of sufficient training data. Moreover, they enable the automation of complex processes that span one or more NDE steps (e.g. detection, characterisation, and sizing). There is, however, a lack of consensus on the direction and requirements that these new methods should follow. These elements are critical to help achieve automation of ultrasonic NDE driven by artificial intelligence such that the research community, industry, and regulatory bodies embrace it. This paper reviews the state-of-the-art of autonomous ultrasonic NDE enabled by DL methodologies. The review is organised by the NDE tasks that are addressed by means of DL approaches. Key remaining challenges for each task are noted. Basic axiomatic principles for DL methods in NDE are identified based on the literature review, relevant international regulations, and current industrial needs. By placing DL methods in the context of general NDE automation levels, this paper aims to provide a roadmap for future research and development in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
1秒前
今后应助小杰要读博采纳,获得10
1秒前
1秒前
蜀山发布了新的文献求助10
2秒前
3秒前
axis发布了新的文献求助10
3秒前
徐小徐发布了新的文献求助10
3秒前
柯一一应助zyy_cwdl采纳,获得10
3秒前
4秒前
LHJ完成签到,获得积分20
4秒前
CodeCraft应助故意的驳采纳,获得10
5秒前
彭于晏应助蜀山采纳,获得10
5秒前
5秒前
8R60d8应助潇洒飞丹采纳,获得10
6秒前
彳亍1117应助潇洒飞丹采纳,获得10
6秒前
小豆豆应助潇洒飞丹采纳,获得10
6秒前
大方芷文完成签到,获得积分10
8秒前
kk发布了新的文献求助10
8秒前
8秒前
8R60d8应助Koi_采纳,获得10
8秒前
香蕉觅云应助pp猪猪采纳,获得10
9秒前
Owen应助kk采纳,获得10
10秒前
蝴蝶变成毛毛虫完成签到,获得积分10
11秒前
11秒前
王SQ完成签到 ,获得积分10
12秒前
蜀山完成签到,获得积分10
13秒前
科研通AI2S应助Georges-09采纳,获得10
14秒前
奶盖呀完成签到 ,获得积分20
15秒前
15秒前
17秒前
dyvdyvaass发布了新的文献求助10
17秒前
zorofu5发布了新的文献求助10
19秒前
19秒前
Kirin完成签到 ,获得积分10
20秒前
靖哥哥完成签到,获得积分20
21秒前
21秒前
靖哥哥发布了新的文献求助10
24秒前
丘比特应助傲娇的觅翠采纳,获得10
25秒前
小开完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152